Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128501    DOI: 10.1088/1674-1056/27/12/128501

Influence of characteristics' measurement sequence on total ionizing dose effect in PDSOI nMOSFET

Xin Xie(解鑫)1,2, Da-Wei Bi(毕大伟)1, Zhi-Yuan Hu(胡志远)1, Hui-Long Zhu(朱慧龙)1,2, Meng-Ying Zhang(张梦映)1,2, Zheng-Xuan Zhang(张正选)1, Shi-Chang Zou(邹世昌)1
1 State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China

The influence of characteristics' measurement sequence on total ionizing dose effect in partially-depleted SOI nMOSFET is comprehensively studied. We find that measuring the front-gate curves has no influence on total ionizing dose effect. However, the back-gate curves' measurement has a great influence on total ionizing dose effect due to high electric field in the buried oxide during measuring. In this paper, we analyze their mechanisms and we find that there are three kinds of electrons tunneling mechanisms at the bottom corner of the shallow trench isolation and in the buried oxide during the back-gate curves' measurement, which are:Fowler-Nordheim tunneling, trap-assisted tunneling, and charge-assisted tunneling. The tunneling electrons neutralize the radiation-induced positive trapped charges, which weakens the total ionizing dose effect. As the total ionizing dose level increases, the charge-assisted tunneling is enhanced by the radiation-induced positive trapped charges. Hence, the influence of the back-gate curves' measurement is enhanced as the total ionizing dose level increases. Different irradiation biases are compared with each other. An appropriate measurement sequence and voltage bias are proposed to eliminate the influence of measurement.

Keywords:  total ionizing dose (TID)      silicon-on-insulator (SOI)      measurement sequence      tunneling effect  
Received:  16 August 2018      Revised:  17 September 2018      Published:  05 December 2018
PACS:  85.30.-z (Semiconductor devices)  
  61.80.-x (Physical radiation effects, radiation damage)  
  07.87.+v (Spaceborne and space research instruments, apparatus, and components (satellites, space vehicles, etc.))  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Corresponding Authors:  Xin Xie     E-mail:

Cite this article: 

Xin Xie(解鑫), Da-Wei Bi(毕大伟), Zhi-Yuan Hu(胡志远), Hui-Long Zhu(朱慧龙), Meng-Ying Zhang(张梦映), Zheng-Xuan Zhang(张正选), Shi-Chang Zou(邹世昌) Influence of characteristics' measurement sequence on total ionizing dose effect in PDSOI nMOSFET 2018 Chin. Phys. B 27 128501

[1] Schwank J R, Ferlet-Cavrois V, Shaneyfelt M R, Paillet P and Dodd P E 2003 IEEE Trans. Nucl. Sci. 50 522
[2] Saks N S, Ancona M G and Modolo J A 1984 IEEE Trans. Nucl. Sci. 31 1249
[3] Oldham T R and McLean F B 2003 IEEE Trans. Nucl. Sci. 50 483
[4] Schwank J R, Shaneyfelt M R, Fleetwood D M, Felix J A, Dodd P E, Paillet P and Ferlet-Cavrois V 2008 IEEE Trans. Nucl. Sci. 55 1833
[5] Dai L H, Liu X N, Zhang M Y, Zhang L Q, Hu Z Y, Bi D W, Zhang Z X and Zou S C 2017 Microelectron. Reliab. 74 74
[6] Liu X N, Dai L H, Ning B X and Zou S C 2017 Chin. Phys. Lett. 34 016103
[7] Peng C, Hu Z Y, Ning B X, Huang H X, Zhang Z X, Bi D W, En Y F and Zou S C 2014 IEEE Electron Dev. Lett. 35 503
[8] Peng C, Zhang Z X, Hu Z Y, Huang H X, Ning B X and Bi D W 2013 Chin. Phys. Lett. 30 098502
[9] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Chen M, Bi D W and Zou S C 2011 IEEE Trans. Nucl. Sci. 58 1324
[10] Wang Z, Feng C, Gu Q, Yu L H and Zhao Z T 2017 Nucl. Sci. Tech. 28 151
[11] Zheng Q W, Cui J W, Yu X F, Guo Q, Zhou H and Ren D Y 2014 Chin. Phys. Lett. 31 126101
[12] Ning B X, Bi D W, Huang H X, Zhang Z X, Hu Z Y, Chen M and Zou S C 2013 Microelectron. Reliab. 53 259
[13] Zhang Y, Huang H, Bi D, Tang M and Zhang Z 2014 Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 745 128
[14] Huang H, Bi D, Ning B, Zhang Y, Zhang Z and Zou S 2013 IEEE Trans. Nucl. Sci. 60 1354
[15] Dai L H, Bi D W, Zhang Z X, Xie X, Hu Z Y, Huang H X and Zou S C 2018 Chin. Phys. Lett. 35 056101
[16] Ning B X, Bi D W, Huang H X, Zhang Z X, Chen M and Zou S C 2013 Microelectron. J. 44 86
[17] Huang H, Bi D and Zhang Z 2014 Microelectron. J. 45 759
[18] Liu Y, Chen H B, Liu Y R, Wang X, En Y F, Li B and Lu Y D 2015 Chin. Phys. B 24 088503
[19] Ortiz-Conde A, Sanchez F J G, Liou J J, Cerdeira A, Estrada M and Yue Y 2002 Microelectron. Reliab. 42 Pii s0026-2714(02)00027-6 583
[20] Nazarov A N, Kilchytska V I, Houk Y and Ballutaud D 2003 J. Appl. Phys. 94 1823
[21] Chou A I, Lai K, Kumar K, Chowdhury P and Lee J C 1997 Appl. Phys. Lett. 70 3407
[22] Svensson C and Lundstrom I 1973 J. Appl. Phys. 44 4657
[23] Stahlbush R E 1997 IEEE Trans. Nucl. Sci. 44 2106
[24] Gruber O, Paillet P, Autran J L, Aspar B and AubertonHerve A J 1997 Microelectron. Eng. 36 387
[25] Gruber O, Paillet P, Musseau O, Marcandella C, Aspar B and Auberton-Herve A J 1998 IEEE Trans. Nucl. Sci. 45 1402
[26] Maserjian J and Zamani N 1982 J. Vac. Sci. Technol. 20 743
[27] Schmidlin F W 1966 J. Appl. Phys. 37 2823
[1] Effects of buried oxide layer on working speed of SiGe heterojunction photo-transistor
Xian-Cheng Liu(刘先程), Jia-Jun Ma(马佳俊), Hong-Yun Xie(谢红云), Pei Ma(马佩), Liang Chen(陈亮), Min Guo(郭敏), Wan-Rong Zhang(张万荣). Chin. Phys. B, 2020, 29(2): 028501.
[2] Realizing photomultiplication-type organic photodetectors based on C60-doped bulk heterojunction structure at low bias
Wei Gong(龚伟), Tao An(安涛), Xinying Liu(刘欣颖), Gang Lu(卢刚). Chin. Phys. B, 2019, 28(3): 038501.
[3] Total ionizing dose induced single transistor latchup in 130-nm PDSOI input/output NMOSFETs
Shuang Fan(樊双), Zhi-Yuan Hu(胡志远), Zheng-Xuan Zhang(张正选), Bing-Xu Ning(宁冰旭), Da-Wei Bi(毕大炜), Li-Hua Dai(戴丽华), Meng-Ying Zhang(张梦映), Le-Qing Zhang(张乐情). Chin. Phys. B, 2017, 26(3): 036103.
[4] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[5] Comparison of radiation degradation induced by x-rayand 3-MeV protons in 65-nm CMOS transistors
Lili Ding(丁李利), Simone Gerardin, Marta Bagatin, Dario Bisello, Serena Mattiazzo, Alessandro Paccagnella. Chin. Phys. B, 2016, 25(9): 096110.
[6] Modeling of a triple reduced surface field silicon-on-insulator lateral double-diffused metal-oxide-semiconductor field-effect transistor with low on-state resistance
Yu-Ru Wang(王裕如), Yi-He Liu(刘祎鹤), Zhao-Jiang Lin(林兆江), Dong Fang(方冬), Cheng-Zhou Li(李成州), Ming Qiao(乔明), Bo Zhang(张波). Chin. Phys. B, 2016, 25(2): 027305.
[7] Effects of back gate bias on radio-frequency performance in partially depleted silicon-on-inslator nMOSFETs
Lü Kai, Chen Jing, Luo Jie-Xin, He Wei-Wei, Huang Jian-Qiang, Chai Zhan, Wang Xi. Chin. Phys. B, 2015, 24(8): 088501.
[8] Microwave photonic filter with a continuously tunable central frequency using an SOI high-Q microdisk resonator
Liu Li, Yang Ting, Dong Jian-Ji. Chin. Phys. B, 2014, 23(9): 093201.
[9] Tunneling effect in cavity-resonator-coupled arrays
Ma Hua, Qu Shao-Bo, Liang Chang-Hong, Zhang Jie-Qiu, Xu Zhuo, Wang Jia-Fu. Chin. Phys. B, 2013, 22(5): 057805.
[10] Tunneling of Boseben–Einstein condensate and interference effect in a harmonic trap with a Gaussian energy barrier
Hua Wei, Li Bin, Liu Xue-Shen. Chin. Phys. B, 2011, 20(6): 060308.
[11] Dynamics of Bose–Einstein condensate in a harmonic potential and a Gaussian energy barrier
Hua Wei, Li Bin, Liu Xue-Shen. Chin. Phys. B, 2011, 20(1): 010311.
No Suggested Reading articles found!