Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 128101    DOI: 10.1088/1674-1056/27/12/128101
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Large magnetic moment at sheared ends of single-walled carbon nanotubes

Jian Zhang(张健)1,4, Ya Deng(邓娅)1,4, Ting-Ting Hao(郝婷婷)2, Xiao Hu(胡潇)1,4, Ya-Yun Liu(刘雅芸)1,4, Zhi-Sheng Peng(彭志盛)3, Jean Pierre Nshimiyimana1,4, Xian-Nian Chi(池宪念)1,4, Pei Wu(武佩)1,4, Si-Yu Liu(刘思雨)3, Zhong Zhang(张忠)1, Jun-Jie Li(李俊杰)2, Gong-Tang Wang(王公堂)3, Wei-Guo Chu(褚卫国)1, Chang-Zhi Gu(顾长志)2, Lian-Feng Sun(孙连峰)1
1 CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China;
2 Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China;
3 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
4 University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

In this work we report that after single-walled carbon nanotubes (SWNTs) are sheared with a pair of titanium scissors, the magnetization becomes larger than that of the corresponding pristine ones. The magnetization increases proportionally with the number of SWNTs with sheared ends, suggesting that there exist magnetic moments at the sheared ends of SWNTs. By using the coefficient of this linear relation, the average magnetic moment is estimated to be 41.5±9.8 μB (Bohr magneton) per carbon atom in the edge state at temperature of 300.0 K, suggesting that ultrahigh magnetic fields can be produced. The dangling sigma and pi bonds of the carbon atoms at sheared ends play important roles in determining the unexpectedly high magnetic moments, which may have great potential applications.

Keywords:  carbon nanotubes      shear      open ends      magnetic moments  
Received:  31 May 2018      Revised:  18 September 2018      Published:  05 December 2018
PACS:  81.05.U- (Carbon/carbon-based materials)  
  75.75.-c (Magnetic properties of nanostructures)  
  75.60.-d (Domain effects, magnetization curves, and hysteresis)  
  81.70.Pg (Thermal analysis, differential thermal analysis (DTA), differential thermogravimetric analysis)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0208403 and 2016YFA0200403), the National Natural Science Foundation of China (Grant Nos. 51472057, 11874129, 91323304, and 11674387), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09040101), and the Baotou Rare Earth Research and Development Centre, Chinese Academy of Sciences (Grant No. GZR 2018001).

Corresponding Authors:  Jian Zhang, Ya Deng, Lian-Feng Sun     E-mail:  wanggt@sdnu.edu.cn;wgchu@nanoctr.cn;slf@nanoctr.cn

Cite this article: 

Jian Zhang(张健), Ya Deng(邓娅), Ting-Ting Hao(郝婷婷), Xiao Hu(胡潇), Ya-Yun Liu(刘雅芸), Zhi-Sheng Peng(彭志盛), Jean Pierre Nshimiyimana, Xian-Nian Chi(池宪念), Pei Wu(武佩), Si-Yu Liu(刘思雨), Zhong Zhang(张忠), Jun-Jie Li(李俊杰), Gong-Tang Wang(王公堂), Wei-Guo Chu(褚卫国), Chang-Zhi Gu(顾长志), Lian-Feng Sun(孙连峰) Large magnetic moment at sheared ends of single-walled carbon nanotubes 2018 Chin. Phys. B 27 128101

[1] Lai D 2001 Rev. Mod. Phys. 73 629
[2] Klitzing K, Dorda G and Pepper M 1980 Phys. Rev. Lett. 45 494
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, DubonosS V and Firsov A A 2005 Nature 438 197
[4] TsuiD C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[5] Yu R, ZhangW, Zhang H, Zhang S, Dai X and Fang Z 2010 Science 329 61
[6] Qi Y, Lv S, Du A and Yu N 2016 Chin. Phys. B 25 117501
[7] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[8] Lange K K, Tellgren E I, Hoffmann M R and Helgaker T 2012 Science 337 327
[9] SaliliS M, Tamba M G, Sprunt S N, Welch C, Mehl G H, Jákli A, Gleeson J and T 2016 Phys. Rev. Lett. 116 217801
[10] Haravifard S, Graf D, Feiguin A E, Batista C D, Lang J C, Silevitch D M, Srajer G, Gaulin H, Dabkowska A and Rosenbaum T F 2016 Nat. Commun. 7 11956
[11] Lauterbur P C 1973 Nature 242 190
[12] Shou Q Y, Feng L, Long Y, Han J, Nunnery J K, Powell D H and Butcher R A 2016 Nat. Chem. Biol. 12 770
[13] Weijers H W, Markiewicz W D, Gavrilin A V, Voran A J, Viouchkov Y L, Gundlach S R, Noyes P D, Abraimov D V, Bai H, Hannahs S T and Murphy T P 2016 IEEE Trans. Appl. Supercond. 264 300807
[14] JilesD C 2015 Introduction to Magnetism and Magnetic Materials (London: CRC Press)
[15] Feynman R P 1964 The Feynman Lectures on Physics (Leighton, Robert B.; Sands Matthew)
[16] Zhang J, Liu S, Nshimiyimana J P, Deng Y, Hou G, Chi X, Hu X, Zhang Z, Wu P, Wang G, Chu W and Sun L 2017 Small 13 1701218
[17] Yu M F, Lourie O, Dyer M J, Moloni K, Kelly T F and Ruoff R S 2000 Science 287 637
[18] Nakada K, Fujita M, Dresselhaus G and Dresselhaus M S 1996 Phys. Rev. B 54 17954
[19] Shi Z J, Lian Y, Liao F, Zhou X, Gu Z, Zhang Y and Iijima S 1999 Solid State Commun. 112 35
[20] Choucair M, Tse N M K, Hill M R and Stride J A 2012 Surf. Sci. 606 34
[21] Zhu X Y, Lee S M, Lee Y H and Frauenheim T 2000 Phys. Rev. Lett. 85 2757
[22] Han K H, Spemann D, Esquinazi P, Hohne R, Riede V and Butz T 2003 Adv. Mater. 15 1719
[23] Ohldag H, Tyliszczak T, Höhne R, Spemann D, Esquinazi P, Ungureanu M and Butz T 2007 Phys. Rev. Lett. 98 187204
[24] Cervenka J, Katsnelson M I and Flipse C F J 2009 Nat. Phys. 5 840
[25] Wang Y, Huang Y, Song Y, Zhang X, Ma Y, Liang J and Chen Y 2009 Nano Lett. 9 220
[26] Zhou P and He D W 2016 Chin. Phys. B 25 017302
[27] GonzalezHerrero H, GómezRodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J V, Yndurain F and Brihuega I 2016 Science 352 437
[28] Wang G, Chen M, Yu F, Xue L, Deng Y, Zhang J, Qi X, Gao Y, Chu W, Liu G, Yang H, Gu C and Sun L 2015 Chin. Phys. B 24 016202
[29] Zhang Y, Li S Y, Huang H, Li W T, Qiao J B, Wang W X, Yin L J, Bai K K, Duan W and He L 2016 Phys. Rev. Lett. 117 166801
[30] Kim P, Odom T W, Huang J L and Lieber C M 1999 Phys. Rev. Lett. 82 1225
[31] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[32] Yang F, Wang X, Zhang D, Yang J, Luo D, Xu Z, Wei J, Wang J, Xu Z, Peng F, Li X, Li R, Li Y, Li M, Bai X, Ding F and Li Y 2014 Nature 510 522
[33] Wei Q, Wei Z, Ren L, Zhao H, Ye T, Shi Z, Fu Y, Zhang X and Huang R 2012 Chin. Phys. B 21 088103
[34] Zhang J, Deng Y, Hu X, Nshimiyimana J P, Liu S, Chi X, Wu P, Dong F, Chen P, Chu W and Sun L 2018 Adv. Sci. 5 1700588
[1] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[2] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[3] Ultrasonic beam focusing characteristics of shear-vertical waves for contact-type linear phased array in solid
Yu-Xiang Dai(戴宇翔), Shou-Guo Yan(阎守国), Bi-Xing Zhang(张碧星). Chin. Phys. B, 2020, 29(3): 034304.
[4] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[5] Adsorption and desorption phenomena on thermally annealed multi-walled carbon nanotubes by XANES study
Camile Rodolphe Tchenguem Kamto, Bridinette Thiodjio Sendja, Jeannot Mane Mane. Chin. Phys. B, 2019, 28(9): 093101.
[6] Enhancement of corona discharge induced wind generation with carbon nanotube and titanium dioxide decoration
Jianchun Ye(叶建春), Jun Li(李俊), Xiaohong Chen(陈晓红), Sumei Huang(黄素梅), Wei Ou-Yang(欧阳威). Chin. Phys. B, 2019, 28(9): 095202.
[7] A nonlinear Schrödinger equation for gravity waves slowly modulated by linear shear flow
Shaofeng Li(李少峰), Juan Chen(陈娟), Anzhou Cao(曹安州), Jinbao Song(宋金宝). Chin. Phys. B, 2019, 28(12): 124701.
[8] Inducing opto-electronic and spintronic trends in bilayer h-BN through TMO3 clusters incorporation: Ab-initio study
Irfan Ahmed, Muhammad Rafique, Mukhtiar Ahmed Mahar, Abdul Sattar Larik, Mohsin Ali Tunio, Yong Shuai(帅永). Chin. Phys. B, 2019, 28(11): 116301.
[9] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[10] Jamming of packings of frictionless particles with and without shear
Wen Zheng(郑文), Shiyun Zhang(张世允), Ning Xu(徐宁). Chin. Phys. B, 2018, 27(6): 066102.
[11] Schamel equation in an inhomogeneous magnetized sheared flow plasma with q-nonextensive trapped electrons
Shaukat Ali Shan, Qamar-ul-Haque. Chin. Phys. B, 2018, 27(2): 025203.
[12] Thermal conductivity of carbon nanotube superlattices: Comparative study with defective carbon nanotubes
Kui-Kui Zhou(周魁葵), Ning Xu(徐 宁), Guo-Feng Xie(谢国锋). Chin. Phys. B, 2018, 27(2): 026501.
[13] Preliminary computation of the gap eigenmode of shear Alfvén waves on the LAPD
Lei Chang(苌磊). Chin. Phys. B, 2018, 27(12): 125201.
[14] Numerical simulation of the multiple reversed shear Alfvén eigenmodes associated with the triangularity Alfvén gap
Wenjia Wang(王文家), Deng Zhou(周登), Youjun Hu(胡友俊), Yue Ming(明玥), Baolong Hao(郝保龙). Chin. Phys. B, 2018, 27(12): 125202.
[15] Elastic strain response in the modified phase-field-crystal model
Wenquan Zhou(周文权), Jincheng Wang(王锦程), Zhijun Wang(王志军), Yunhao Huang(黄赟浩), Can Guo(郭灿), Junjie Li(李俊杰), Yaolin Guo(郭耀麟). Chin. Phys. B, 2017, 26(9): 090702.
No Suggested Reading articles found!