Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127203    DOI: 10.1088/1674-1056/27/12/127203
SPECIAL TOPIC—60th Anniversary of Department of Physics of Nanjing Normal University Prev   Next  

Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries

Zhizhou Yu(俞之舟)1, Fuming Xu(许富明)2
1 Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 College of Physics and Energy, Shenzhen University, Shenzhen 518060, China
Abstract  

We numerically investigate the valley-polarized current in symmetric and asymmetric zigzag graphene nanoribbons (ZGNRs) by the adiabatic pump, and the effect of spatial symmetry is considered by introducing different pumping regions. It is found that pumping potentials with the symmetry Vp(x,y)=Vp(-x,y) can generate the largest valley-polarized current. The valley-polarized currents I13L with the pumping potential symmetry Vp(x,y)=Vp(x,-y) and I14L with Vp(x,y)=Vp(-x,-y) of symmetric ZGNRs are much smaller than those of asymmetric ZGNRs. We also find I13L and I14L of symmetric ZGNRs decrease and increase with the increasing pumping amplitude, respectively. Moreover, the dephasing effect from the electron-phonon coupling within the Buttiker dephasing scheme is introduced. The valley-polarized current of the symmetric ZGNRs with Vp(x,y)=Vp(x,-y) increases with the increase of the dephasing strength while that with Vp(x,y)=Vp(-x,-y) decreases as the dephasing strength increases.

Keywords:  valley polarization      charge pump      graphene      quantum transport     
Received:  27 August 2018      Published:  05 December 2018
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11704190, 11874221, and 11504240) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20171030).

Corresponding Authors:  Zhizhou Yu     E-mail:  yuzhizhou@njnu.edu.cn

Cite this article: 

Zhizhou Yu(俞之舟), Fuming Xu(许富明) Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries 2018 Chin. Phys. B 27 127203

[1] Rycerz A, Tworzyd?o J and Beenakker C W J 2007 Nat. Phys. 3 172
[2] Xiao D, Yao W and Niu Q 2007 Phys. Rev. Lett. 99 236809
[3] Peres N M R 2010 Rev. Mod. Phys. 82 2673
[4] Gunlycke D and White C T 2011 Phys. Rev. Lett. 106 136806
[5] Nebel C E 2013 Nat. Mater. 12 690
[6] Gorbachev R V, Song J C W, Yu G L, Kretinin A V, Withers F, Cao Y, Mishchenko A, Grigorieva I V, Novoselov K S, Levitov L S and Geim A K 2014 Science 346 448
[7] Xu X, Yao W, Xiao D and Heinz T F 2014 Nat. Phys. 10 343
[8] Zhang L and Wang J 2014 Chin. Phys. B 23 087202
[9] Tian H Y 2015 Chin. Phys. B 24 127301
[10] Chen X, Zhang L and Guo H 2015 Phys. Rev. B 92 155427
[11] Xu F, Yu Z, Ren Y, Wang B, Wei Y and Qiao Z 2016 New J. Phys. 18 113011
[12] Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W and Xu X 2016 Nat. Rev. Mater. 1 16055
[13] Yu Z, Xu F and Wang J 2016 Carbon 99 451
[14] Zhang L, Yu Z, Xu F and Wang J 2018 Carbon 126 183
[15] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 2015 Nat. Phys. 11 1032
[16] Zhang L, Gong K, Chen J, Liu L, Zhu Y, Xiao D and Guo H 2014 Phys. Rev. B 90 195428
[17] Yu Y, Zhou Y, Wan L, Wang B, Xu F, Wei Y and Wang J 2016 Nanotechnology 27 185202
[18] Brouwer P W 1998 Phys. Rev. B 58 R10135
[19] Makhlin Y and Mirlin A D 2001 Phys. Rev. Lett. 87 276803
[20] Wang B, Wang J and Guo H 2003 Phys. Rev. B 68 155326
[21] Li C, Yu Y, Wei Y and Wang J 2007 Phys. Rev. B 75 035312
[22] Xu F, Xing Y and Wang J 2011 Phys. Rev. B 84 245323
[23] Xing Y, Wang B, Wei Y, Wang B and Wang J 2004 Phys. Rev. B 70 245324
[24] Zhang Q, Chan K S and Lin Z 2011 Appl. Phys. Lett. 98 032106
[25] Chen M N, Sheng L, Shen R, Sheng D N and Xing D Y 2015 Phys. Rev. B 91 125117
[26] Deng W Y, Luo W, Geng H, Chen M N, Sheng L and Xing D Y 2015 New J. Phys. 17 103018
[27] Marcellino J T J, Wang M J, Wang S K and Wang J 2018 Chin. Phys. B 27 057801
[28] Wang J and Liu J F 2017 Phys. Rev. B 95 205433
[29] Jiang Y, Low T, Chang K, Katsnelson M I and Guinea F 2013 Phys. Rev. Lett. 110 046601
[30] Wang J, Chan K S and Lin Z 2014 Appl. Phys. Lett. 104 013105
[31] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[32] Büttiker M 1993 J. Phys.: Condens. Matter 5 9361
[33] Büttiker M 1986 Phys. Rev. B 33 3020
[34] Xing Y, Sun Q F and Wang J 2008 Phys. Rev. B 77 115346
[35] Li Z, Qian H, Wu J, Gu B L and Duan W 2008 Phys. Rev. Lett. 100 206802
[36] Wei Y, Wang J and Guo H 2000 Phys. Rev. B 62 9947
[1] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[2] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[3] High performance terahertz anisotropic absorption in graphene-black phosphorus heterostructure
Jinming Liang(梁晋铭), Jiangtao Lei(雷江涛), Yun Wang(汪云), Yan Ding(丁燕), Yun Shen(沈云), Xiaohua Deng(邓晓华). Chin. Phys. B, 2020, 29(8): 087805.
[4] Low-power electro-optic phase modulator based on multilayer graphene/silicon nitride waveguide
Lanting Ji(姬兰婷), Wei Chen(陈威), Yang Gao(高阳), Yan Xu(许言), Chi Wu(吴锜), Xibin Wang(王希斌), Yunji Yi(衣云骥), Baohua Li(李宝华), Xiaoqiang Sun(孙小强), Daming Zhang(张大明). Chin. Phys. B, 2020, 29(8): 084207.
[5] Recent progress in graphene terahertz modulators
Xieyu Chen(陈勰宇), Zhen Tian(田震), Quan Li(李泉), Shaoxian Li(李绍限), Xueqian Zhang(张学迁), Chunmei Ouyang(欧阳春梅), Jianqiang Gu(谷建强), Jiaguang Han(韩家广), Weili Zhang(张伟力). Chin. Phys. B, 2020, 29(7): 077803.
[6] Adjustable polarization-independent wide-incident-angle broadband far-infrared absorber
Jiu-Sheng Li(李九生), Xu-Sheng Chen(陈旭生). Chin. Phys. B, 2020, 29(7): 078703.
[7] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[8] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
[9] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[10] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[11] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[12] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[13] High sensitive pressure sensors based on multiple coating technique
Rizwan Zahoor, Chang Liu(刘畅), Muhammad Rizwan Anwar, Fu-Yan Lin(林付艳), An-Qi Hu(胡安琪), Xia Guo(郭霞). Chin. Phys. B, 2020, 29(2): 028102.
[14] Triphenylene adsorption on Cu(111) and relevant graphene self-assembly
Qiao-Yue Chen(陈乔悦), Jun-Jie Song(宋俊杰), Liwei Jing(井立威), Kaikai Huang(黄凯凯), Pimo He(何丕模), Hanjie Zhang(张寒洁). Chin. Phys. B, 2020, 29(2): 026801.
[15] Progress on band structure engineering of twisted bilayer and two-dimensional moir\'e heterostructures
Wei Yao(姚维), Martin Aeschlimann, and Shuyun Zhou(周树云). Chin. Phys. B, 2020, 29(12): 127304.
No Suggested Reading articles found!