Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 124101    DOI: 10.1088/1674-1056/27/12/124101

Homogeneous transparent device and its layered realization

Cheng-Fu Yang(杨成福)1, Ming Huang(黄铭)1, Jing-Jing Yang(杨晶晶)1, Fu-Chun Mao(毛福春)1, Ting-Hua Li(李廷华)2, Peng Li(黎鹏)1, Peng-Shan Ren(任鹏姗)1
1 School of Information Science and Engineering, Wireless Innovation Laboratory of Yunnan University, Kunming 650091, China;
2 Technology Center of China Tobacco Yunnan Industrial Corporation, Kunming 650231, China

Arbitrarily shaped electromagnetic transparent devices with homogeneous, non-negative, anisotropic and generic constitutive parameters are proposed based on linear transformation optics, which provides the flexibility for device design that is applicable for the practical fabrication. To remove the anisotropic property, a layered structure is developed based on effective medium theory. Simulation results show that with sufficient layers, the performance of the layered transparent device is nearly as perfect as an ideal device, and it is able to protect an antenna without sacrificing its performance. The feasibility of designing a transparent device by using natural isotropic materials instead of metamaterials would dramatically reduce the difficulty of fabrication and further promote the practicality of the device.

Keywords:  transformation optics      transparent device      metamaterials      effective medium theory  
Received:  18 June 2018      Revised:  14 August 2018      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61461052 and 11564044) and the Key Program of the Natural Science Foundation of Yunnan Province, China (Grant Nos. 2013FA006 and 2015FA015).

Corresponding Authors:  Ming Huang, Jing-Jing Yang     E-mail:;

Cite this article: 

Cheng-Fu Yang(杨成福), Ming Huang(黄铭), Jing-Jing Yang(杨晶晶), Fu-Chun Mao(毛福春), Ting-Hua Li(李廷华), Peng Li(黎鹏), Peng-Shan Ren(任鹏姗) Homogeneous transparent device and its layered realization 2018 Chin. Phys. B 27 124101

[1] Pendry J B, Schurig D and Smith D R 2006 Science 312 1780
[2] Leonhardt U 2006 Science 312 1777
[3] Chen H Y, Chan C T and Sheng P 2010 Nat. Mater. 9 387
[4] Liu R, Ji C, Mock J J, Chin J Y, Cui T J and Smith D R 2009 Science 323 366
[5] Lai Y, Chen H, Zhang Z Q and Chan C T 2009 Phys. Rev. Lett. 102 093901
[6] Valentine J, Li J, Zentgraf T, Bartal G and Zhang X 2009 Nat. Mater. 8 568
[7] Han T, Tang X and Xiao F 2009 J. Phys. D: Appl. Phys. 42 235403
[8] Yang J J, Huang M, Yang C F and Yu J 2011 Eur. Phys. J. D 61 731
[9] Wong Z J, Wang Y, O'Brien K, Rho J, Yin X, Zhang S and Zhang X 2017 J. Opt. 19 084007
[10] Zheng B, Madni H A, Hao R, Zhang X, Liu X, Li E and Chen H 2016 Light-Sci. Appl. 5 e16177
[11] Rajput A and Srivastava K V 2017 Plasmonics 12 771
[12] Madni H A, Hussain K, Jiang W X, Liu S, Aziz A, Iqbal S and Cui T J arXiv: 1805.05403
[13] Luo X Y, Liu D Y, Liu J J and Dong J F 2014 Chin. Phys. B 23 054101
[14] Liu G C, Li C, Shao J J, F and G Y 2014 Chin. Phys. Lett. 31 044101
[15] Zang X F, Zhu Y M, Ji X B, Chen L, Hu Q and Zhuang S L 2017 Sci. Rep. 7 40941
[16] Jiang W X, Cui T J, Yang X M, Ma H F and Cheng Q 2011 Appl. Phys. Lett. 98 204101
[17] Li T H, Huang M, Yang J, Xu X and Chen M 2015 Mod. Phys. Lett. B 29 1550045
[18] Zhang K, Ding X, Wo D, Meng F and Wu Q 2016 Appl. Phys. Lett. 108 053508
[19] Jiang W X, Bao D and Cui T J 2016 J. Opt. 18 044022
[20] Wang H, Deng Y, Zheng B, Li R, Jiang Y, Dehdashti S and Chen H 2017 Sci. Rep. 7 40083
[21] Yang R, Kong X, Wang H, Su H, Lei Z, Wang J and Chen L 2016 Sci. Rep. 6 20530
[22] Eskandari H, Majedi M S and Attari A R 2017 JOSA B 34 1191
[23] Wu Y L, Zhuang Z, Deng L and Liu Y A 2016 Sci. Rep. 6 24495
[24] Mei J S, Wu Q, Zhang K, He X J and Wang Y 2016 Opt. Commun. 368 113
[25] Yu Z Z, Feng Y J, Wang Z B, Zhao J M and Jiang T C 2013 Chin. Phys. B 22 034102
[26] Chen X, Cai L and Wen J H 2018 Chin. Phys. B 27 057803
[27] Zhang K L, Hou Z L, Bi S and Fang H M 2017 Chin. Phys. B 26 0127802
[28] Xia G, Kou W, Yang L and Du Y C 2017 Chin. Phys. B 26 0104403
[29] Wang Y Y, Ding E L, Liu X Z and Gong X F 2016 Chin. Phys. B 25 0124305
[30] Yu G X, Cui T J and Jiang W 2009 J. Infrared. Millim. T. E 30 633
[31] Yang C F, Yang J J, Huang M, Shi J H and Peng J H 2010 RadioEng. 19 136
[32] Mei Z L, Niu T M, Bai J and Cui T J 2010 J. Appl. Phys. 107 124908
[33] Yang J J, Li T H, Huang M and Cheng M 2011 Appl. Phys. A 104 733
[34] Li T, Huang M, Yang J, Yu J and Lan Y 2011 J. Phys. D: Appl. Phys. 44 325102
[35] Li T, Huang M, Yang J J, Xie, R S and Yu J 2012 Int. J. Rf. Microw. C E 22 522
[36] Li T H, Huang M, Yang J J, Yang G and Cai G H 2014 Chin. Phys. B 23 054102
[37] Han T and Wu Z 2014 Opt. Lett. 39 3698
[38] Wood B, Pendry, J B and Tsai D P 2006 Phys. Rev. B 74 115116
[39] Li T, Huang M, Yang J, Zhu W and Zeng J 2013 IEEE T. Magn. 49 5280
[1] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[2] Reflectionless spatial beam benders with arbitrary bending angle by introducing optic-null medium into transformation optics
Fei Sun(孙非), Yi-Chao Liu(刘一超), Yi-Biao Yang(杨毅彪), Hong-Ming Fei(费宏明), Zhi-Hui Chen(陈智辉), and Sai-Ling He(何赛灵). Chin. Phys. B, 2021, 30(3): 034101.
[3] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[4] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[5] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[6] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[7] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[8] Three-dimensional thermal illusion devices with arbitrary shape
Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志). Chin. Phys. B, 2019, 28(6): 064403.
[9] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[10] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
[11] Controlling flexural waves in thin plates by using transformation acoustic metamaterials
Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(5): 057803.
[12] Robust stability characterizations of active metamaterials with non-Foster loads
Yi-Feng Fan(范逸风), Yong-Zhi Sun(孙永志). Chin. Phys. B, 2018, 27(2): 028102.
[13] Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas
Yahong Liu(刘亚红), Xiaopeng Zhao(赵晓鹏). Chin. Phys. B, 2018, 27(11): 117805.
[14] Applications of nanostructures in wide-field, label-free super resolution microscopy
Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青). Chin. Phys. B, 2018, 27(11): 118704.
[15] Retrieval of high-order susceptibilities of nonlinear metamaterials
Zhi-Yu Wang(王志宇), Jin-Peng Qiu(邱仅朋), Hua Chen(陈华), Jiong-Jiong Mo(莫炯炯), Fa-Xin Yu(郁发新). Chin. Phys. B, 2017, 26(9): 094207.
No Suggested Reading articles found!