Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 123101    DOI: 10.1088/1674-1056/27/12/123101

Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions

Huilin Wei(魏惠琳)1, Xiaojun Liu(刘晓军)2
1 Beijing Sport University, Beijing 100084, China;
2 Department of Physics, College of Science, Qiqihar University, Qiqihar 161006, China

The potential energy curves of X1Σ+, A1Σ+, C1Σ+, and B1Π are calculated with high-level MRDCI method, and the calculated spectroscopic constants of those states are in good agreement with most recent experimental data. On the basis of high precision PECs, the radiative processes of H++Be collisions are studied by using the fully quantum, optical potential and semiclassical methods in the energy ranges of 10-8 eV/u-0.1 eV/u, and the radiative decay, the radiative charge transfer, and the radiative association cross-sections are computed. It is found that the radiative association process is dominant in the energy region of 10-8 eV/u-0.02 eV/u, while radiative charge transfer becomes important at higher energies. Rich resonance structures are present in the radiative association and charge transfer cross-sections in the whole energy region considered, which result from the interaction between the quasi-bound rovibrational (J, v) states in the entrance channel with the final continuum state. Significant isotope effects have been found in the radiative decay processes of H++Be collisions.

Keywords:  optical-potential method      radiative charge transfer      radiative association      radiative decay      isotope effects  
Received:  30 August 2018      Revised:  10 October 2018      Accepted manuscript online: 
PACS:  31.50.Df (Potential energy surfaces for excited electronic states)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure) (Excitation energies and lifetimes; oscillator strengths)  

Project supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. A2015011) and the Scientific Research Plan Projects of Heilongjiang Educational Department, China (Grant No. 135209258).

Corresponding Authors:  Xiaojun Liu     E-mail:

Cite this article: 

Huilin Wei(魏惠琳), Xiaojun Liu(刘晓军) Theoretical study of the radiative decay processes in H+(D+, T+)-Be collisions 2018 Chin. Phys. B 27 123101

[1] Lambert D 1993 Phys. Scr. T47 186
[2] Carlsson M, Rutten R J, Bruls J H M J and Shchukina N G 1994 A. & A. 288 860
[3] Lyublinski I E and Vertkov A V 2010 Fusion. Eng. 85 924
[4] Apicella M L, Mazzitelli G, Pericoli R V, Lazarev V, Alekseyev A, Vertkov A and Zagórski R 2007 J. Nucl. Mater. 363 1346
[5] Sun E P, Ren T Q, Liu Q X, Miao Q, Zhang J J, Xu H F and Yan B 2016 Chin. Phys. Lett. 33 023101
[6] Liu X M, Song Y H, Jiang W and Jia W Z 2018 Chin. Phys. Lett. 35 45202
[7] Wu D, Lin C, Wen Y, Xie A and Yan B 2018 Chin. Phys. B 27 083101
[8] Zuo W L, Lv H, Liang H J, Shan S M, Ma R, Yan B and Xu H F 2018 Chin. Phys. B 27 063301
[9] Stancial P C and Zygelman B 1996 Astrophys. J. 472 102
[10] Zygelman B and Dalgarno A 1988 Phys. Rev. A 38 1877
[11] Colin R, Dreze C and Steinhauer M 1983 Can. J. Phys. 61 641
[12] Focsa C, Firth S, Bernath P F and Colin R 1998 J. Chem. Phys. 109 5795
[13] Shayesteh A, Tereszchuk K, Bernath P F and Colin R 2003 J. Chem. Phys. 118 1158
[14] Le Roy R J 2002 LEVEL 7.5: a Computer Program for Solving the Radial Schrödinger Equation for Bound and Quasibound Levels
[15] Koput J 2011 J. Chem. Phys. 135 244308
[16] Pitarch R J, Sánchez M J, Velasco A M and Martin I 2008 J. Chem. Phys. 129 054310
[17] Pitarch R J, Sánchez M J and Velasco A M 2008 J. Comput. Chem. 29 523
[18] Ornellas F R 1982 J. Phys. B: At. Mol. Phys. 15 1977
[19] Ornellas F R 1983 J. Mol. Struct. 92 337
[20] Ornellas F R, Stwalley W C and Zemke W T 1983 J. Chem. Phys. 79 5311
[21] Ornellas F R 1985 J. Chem. Phys. 82 379
[22] Machado F B C and Ornellas F R 1991 J. Chem. Phys. 94 7237
[23] IBubin S and Adamowicz L 2007 J. Chem. Phys. 126 214305
[24] Farjallah M, Ghanmi C and Berriche H 2013 Eur. Phys. J. D 67 1
[25] Errea L F, Herrero B, Mhdez L, Rabadan I and Sanchez P 1994 J. Phys. B: At. Mol. Opt. Phys. 27 L753
[26] Krstić P S and Schultz D R 2009 J. Phys. B: At. Mol. Opt. Phys. 42 065207
[27] Liu C H, Wang J G and Janev R K 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144006
[28] Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules (New York: Van Nostrand-Reinhold)
[29] Coxon J A and Colin R 1997 J. Mol. Spectrosc. 181 215
[30] Buenker R J and Phillips R A 1985 J. Mol. Struct. Theochem. 123 291
[31] Krebs S and Buenker R J 1995 J. Chem. Phys. 103 5613
[32] Dunning T H 1989 J. Chem. Phys. 90 1007
[33] Mitroy J 2010 Phys. Rev. A 82 052516
[34] Banyard K E and Taylor G K 1975 J. Phys. B: At. Mol. Phys. 8 L137
[35] Yan L L, Li X Y, Wu Y, Wang J G and Qu Y Z 2014 Phys. Rev. A 90 032714
[36] He B, Liu L, Wang J J, Ding D and Zhang C H 2009 Acta Phys. Sin. 58 8419 (in Chinese)
[37] Ding D, He B, Qu S X and Wang J G 2013 Acta Phys. Sin. 62 033401 (in Chinese)
[38] Stancil P C and Zygelman B 1995 Phys. Rev. Lett. 75 1495
[1] Quasi-classical trajectory study of the isotope effect on the stereodynamics in the reaction H(2S)+CH(X2Π; v=0, j=1)→C(1D)+H2(X1Σg+)
Wang Yun-Hui, Xiao Chuan-Yun, Deng Kai-Ming, Lu Rui-Feng. Chin. Phys. B, 2014, 23(4): 043401.
[2] Investigation of isotope effects of dynamic properties for H(D) +OF reactions by the quasi-classical trajectory method
Zhao Juan, Xu Yan, Meng Qing-Tian. Chin. Phys. B, 2010, 19(6): 063403.
No Suggested Reading articles found!