Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 118704    DOI: 10.1088/1674-1056/27/11/118704
Special Issue: TOPICAL REVIEW — Nanolasers
TOPICAL REVIEW—Nanolasers Prev   Next  

Applications of nanostructures in wide-field, label-free super resolution microscopy

Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青)
State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China

Super resolution imaging capable of resolving details beyond the diffraction limit is highly desired in many scientific and application fields, including bio-medicine, nanomaterial science, and opto-electronic integration. Up to now, many different methods have been proposed, among which wide-field, label-free super resolution microscopy is indispensable due to its good applicability to diverse sample types, large field of view (FOV), and high imaging speed. In recent years, nanostructures have made a crucial contribution to the wide-field, label-free subdiffraction microscopy, with various working mechanisms and configuration designs. This review summarizes the recent applications of the nanostructures in the wide-field, label-free super resolution microscopy, with the emphasis on the designs of hyperlens with hyperbolic dispersion, microsphere with “nano-jets”, and nanowire ring illumination microscopy based on spatial frequency shift effect. The bottlenecks of the current techniques and possible solutions are also discussed.

Keywords:  optical microscopy      spatial resolution      nanowire      metamaterials  
Received:  11 June 2018      Revised:  31 August 2018      Accepted manuscript online: 
PACS:  87.64.M- (Optical microscopy) (Spatial resolution)  
  78.67.Uh (Nanowires)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 61735017 and 51672245), the Zhejiang Provincial Natural Science Foundation of China (Grant No. R17F050003), the National Key Basic Research Program of China (Grant No. 2015CB352003), the Fundamental Research Funds for the Central Universities, China, the Program for Zhejiang Leading Team of S&T Innovation, China, the Cao Guangbiao Advanced Technology Program, China, and First-class Universities and Academic Programs, China.

Corresponding Authors:  Qing Yang     E-mail:

Cite this article: 

Xiaowei Liu(刘小威), Chao Meng(孟超), Xuechu Xu(徐雪初), Mingwei Tang(汤明炜), Chenlei Pang(庞陈雷), Qing Yang(杨青) Applications of nanostructures in wide-field, label-free super resolution microscopy 2018 Chin. Phys. B 27 118704

[1] Kner P, Chhun B B, Griffis E R, Winoto L and Gustafsson M G L 2009 Nat. Methods 6 339
[2] Ponsetto J L, Bezryadina A, Wei F, Onishi K, Shen H, Huang E, Ferrari L, Ma Q, Zou Y and Liu Z 2017 ACS Nano 11 5344
[3] Schneider J, Zahn J, Maglione M, Sigrist S J, Marquard J, Chojnacki J, Krausslich H G, Sahl S J, Engelhardt J and Hell S W 2015 Nat. Methods 12 827
[4] Kawata S, Inouye Y and Verma P 2009 Nat. Photon. 3 388
[5] Liu X, Wong T T W, Shi J, Ma J, Yang Q and Wang L V 2018 Opt. Lett. 43 947
[6] Wilson T 2011 J. Microsc. 244 113
[7] Wei F and Liu Z 2010 Nano. Lett. 10 2531
[8] Klar T A, Jakobs S, Dyba M, Egner A and Hell S W 2000 Proc. Natl. Acad. Sci. USA 97 8206
[9] Rittweger E, Han K Y, Irvine S E, Eggeling C and Hell S W 2009 Nat. Photon. 3 144
[10] Betzig E 1995 Opt. Lett. 20 237
[11] Betzig E, Patterson G H, Sougrat R, Lindwasser O W, Olenych S, Bonifacino J S, Davidson M W, LippincottSchwartz J and Hess H F 2006 Science 313 1642
[12] Dickson R M, Cubitt A B, Tsien R Y and Moerner W E 1997 Nature 388 355
[13] Zhuang X 2009 Nat. Photon. 3 365
[14] Diezmann A v, Shechtman Y and Moerner W E 2017 Chem. Rev. 117 7244
[15] Hecht B, Sick B, Wild U P, Deckert V, Zenobi R, Martin O J F and Pohl D W 2000 J. Chem. Phys. 112 7761
[16] Wang L and Xu X G 2015 Nat. Commun. 6 8973
[17] Ma D D D, Lee C S, Au F C K, Tong S Y and Lee S T 2003 Science 299 1874
[18] Tong L, Gattass R R, Ashcom J B, He S, Lou J, Shen M, Maxwell I and Mazur E 2003 Nature 426 816
[19] Law M, Greene L E, Johnson J C, Saykally R and Yang P 2005 Nat. Mater. 4 455
[20] Kolmakov A, Zhang Y, Cheng G and Moskovits M 2003 Adv. Mater. 15 997
[21] Choi M, Lee S H, Kim Y, Kang S B, Shin J, Kwak M H, Kang K Y, Lee Y H, Park N and Min B 2011 Nature 470 369
[22] Lee H, Liu Z, Xiong Y, Sun C and Zhang X 2007 Opt. Express 15 15886
[23] Liu Z, Lee H, Xiong Y, Sun C and Zhang X 2007 Science 315 1686
[24] Sun J, Shalaev M I and Litchinitser N M 2015 Nat. Commun. 6 7201
[25] Jacob Z, Alekseyev L V and Narimanov E 2006 Opt. Express 14 8247
[26] Jacob Z, Alekseyev L V and Narimanov E 2007 J. Opt. Soc. Am. A 24 A52
[27] Kildishev A V and Narimanov E E 2007 Opt. Lett. 32 3432
[28] Zhang W, Chen H and Moser H O 2011 Appl. Phys. Lett. 98 073501
[29] Smith E J, Liu Z, Mei Y F and Schmidt O G 2009 Appl. Phys. Lett. 95 083104
[30] Rho J, Ye Z, Xiong Y, Yin X, Liu Z, Choi H, Bartal G and Zhang X 2010 Nat. Commun. 1 143
[31] Cang H, Salandrino A, Wang Y and Zhang X 2015 Nat. Commun. 6 7942
[32] Byun M, Lee D, Kim M, Kim Y, Kim K, Ok J G, Rho J and Lee H 2017 Sci. Rep. 7 46314
[33] Lee D, Kim Y D, Kim M, So S, Choi H J, Mun J, Nguyen D M, Badloe T, Ok J G, Kim K, Lee H and Rho J 2018 ACS Photon. 5 2549
[34] Li H, Fu L, Frenner K and Osten W 2018 Opt. Express 26 10888
[35] Li H, Fu L, Frenner K and Osten W 2018 Opt. Express 26 19574
[36] Ma C and Liu Z 2010 Appl. Phys. Lett. 96 183103
[37] Ma C and Liu Z 2011 J. NanoPhoton. 5 051604
[38] Mason D R, Jouravlev M V and Kim K S 2010 Opt. Lett. 35 2007
[39] Lee J Y, Hong B H, Kim W Y, Min S K, Kim Y, Jouravlev M V, Bose R, Kim K S, Hwang I C, Kaufman L J, Wong C W, Kim P and Kim K S 2009 Nature 460 498
[40] Wang Z, Guo W, Li L, Luk'yanchuk B, Khan A, Liu Z, Chen Z and Hong M 2011 Nat. Commun. 2 218
[41] Fan W, Yan B, Wang Z and Wu L 2016 Sci. Adv. 2 e1600901
[42] Gustafsson M G L 2000 J. Microsc. 198 82
[43] Wei F, Lu D, Shen H, Wan W, Ponsetto J L, Huang E and Liu Z 2014 Nano. Lett. 14 4634
[44] Chowdhury S, Dhalla A H and Izatt J 2012 Biomed. Opt. Express 3 1841
[45] Chowdhury S, Eldridge W J, Wax A and Izatt J A 2017 Biomed. Opt. Express 8 2496
[46] Chowdhury S, Eldridge W J, Wax A and Izatt J 2017 Optica 4 537
[47] Hao X, Kuang C, Li Y and Liu X 2013 Opt. Lett. 38 2455
[48] Olshausen P v and Rohrbach A 2013 Opt. Lett. 38 4066
[49] Hao X, Liu X, Kuang C, Li Y, Ku Y, Zhang H, Li H and Tong L 2013 Appl. Phys. Lett. 102 013104
[50] Liu X, Kuang C, Hao X, Pang C, Xu P, Li H, Liu Y, Yu C, Xu Y, Nan D, Shen W, Fang Y, He L, Liu X and Yang Q 2017 Phy. Rev. Lett. 118 076101
[51] Pang C, Liu X, Zhuge M, Liu X, Somekh M G, Zhao Y, Jin D, Shen W, Li H, Wu L, Wang C, Kuang C and Yang Q 2017 Opt. Lett. 42 4569
[1] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[2] In-plane oriented CH3NH3PbI3 nanowire suppression of the interface electron transfer to PCBM
Tao Wang(王涛), Zhao-Hui Yu(于朝辉), Hao Huang(黄昊), Wei-Guang Kong(孔伟光), Wei Dang(党伟), and Xiao-Hui Zhao(赵晓辉). Chin. Phys. B, 2021, 30(6): 066801.
[3] Mechanical property and deformation mechanism of gold nanowire with non-uniform distribution of twinned boundaries: A molecular dynamics simulation study
Qi-Xin Xiao(肖启鑫), Zhao-Yang Hou(侯兆阳), Chang Li(李昌), and Yuan Niu(牛媛). Chin. Phys. B, 2021, 30(5): 056101.
[4] Pulse-gated mode of commercial superconducting nanowire single photon detectors
Fan Liu(刘帆), Mu-Sheng Jiang(江木生), Yi-Fei Lu(陆宜飞), Yang Wang(汪洋), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2021, 30(4): 040302.
[5] Super-resolution imaging of low-contrast periodic nanoparticle arrays by microsphere-assisted microscopy
Qin-Fang Shi(石勤芳), Song-Lin Yang(杨松林), Yu-Rong Cao(曹玉蓉), Xiao-Qing Wang(王晓晴), Tao Chen(陈涛), and Yong-Hong Ye(叶永红). Chin. Phys. B, 2021, 30(4): 040702.
[6] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[7] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[8] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[9] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[10] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[11] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[12] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[13] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[14] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[15] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
No Suggested Reading articles found!