Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117701    DOI: 10.1088/1674-1056/27/11/117701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at~1.9 μm

Kun Yang(杨坤)1, Shixun Dai(戴世勋)1,2, Yuehao Wu(吴越豪)1,2, Qiuhua Nie(聂秋华)1,2
1 Advanced Technology Research Institute, Laboratory of Infrared Materials and Devices, Ningbo University, Ningbo 315211, China;
2 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China
Abstract  

We report the fabrication and characterization of germanium gallium antimony sulfide (Ge-Ga-Sb-S or 2S2G, doped with Tm3+ ions) microsphere lasers operating at~1.9-μm spectral band. Compared to the chalcogenide glasses that are used in previous microsphere lasers, this 2S2G glass has a lower transition temperature and a higher characteristic temperature. This implies that 2S2G microspheres can be fabricated at lower temperatures and the crystallization problem in the sphere-forming process can be alleviated. We show that hundreds of high-quality microspheres (quality factors higher than 105) of various diameters can be produced simultaneously via a droplet sphere-forming method. Microspheres are coupled with silica fiber tapers for optical characterizations. We demonstrate that Whispering Gallery mode (WGM) patterns in the 1.7-2.0 μm band can be conveniently obtained and that once the pump power exceeds a threshold, single-and multi-mode microsphere lasers can be generated. For a typical microsphere whose diameter is 258.64 μm, we demonstrate its laser threshold is 0.383 mW, the laser wavelength is 1907.38 nm, and the thermal sensitivity of the microsphere laser is 29.56 pm/℃.

Keywords:  chalcogenides      microspheres laser      whispering gallery modes  
Received:  11 July 2018      Revised:  16 August 2018      Published:  05 November 2018
PACS:  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  42.55.Sa (Microcavity and microdisk lasers)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61605094), the Key Program of National Natural Science Foundation of China (Grant No. 61435009), the Natural Science Foundation of Zhejiang Province, China (Grant No. LQ15F050002), and K. C. Wong Magna Fund in Ningbo University, China.

Corresponding Authors:  Yuehao Wu, Qiuhua Nie     E-mail:  wuyuehao@nbu.edu.cn;nieqiuhua@nbu.edu.cn

Cite this article: 

Kun Yang(杨坤), Shixun Dai(戴世勋), Yuehao Wu(吴越豪), Qiuhua Nie(聂秋华) Fabrication and characterization of Ge–Ga–Sb–S glass microsphere lasers operating at~1.9 μm 2018 Chin. Phys. B 27 117701

[1] Tao M, Tao B, Hu Z, Feng G, Ye X and Zhao J 2017 Opt. Exp. 25 32386
[2] Behzadi B, Aliannezhadi M, Hossein-Zadeh M and Jain R K 2017 J. Opt. Soc. Am. B 34 2501
[3] Huang H, Wang H and Shen D 2017 Opt. Mater. Express 7 3147
[4] Sasagawa K, Yonezawa Z, Iwai R, Ohta J and Nunoshita M 2004 Appl. Phys. Lett. 85 4325
[5] Vanier F, Cote F, Amraoui M E, Messaddeq Y, Peter Y A and Rochette M 2015 Opt. Lett. 40 5227
[6] Yang Z, Wu Y, Yang K, Xu P, Zhang W, Dai S and Xu T 2017 Opt. Mater. 72 524
[7] Behzadi B, Jain R K and Hossein-Zadeh M 2017 IEEE J. Quantum Electron. 53 5700109
[8] Behzadi B, Jain R K and Hossein-Zadeh M 2018 Laser Phys. Lett. 15 085112
[9] Deng Y, Jain R K and Hossein-Zadeh M 2014 Opt. Lett. 39 4458
[10] Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141
[11] Elliott G R, SenthilMurugan G, WilkinsonJ S, Zervas M N and Hewak D W 2010 Opt. Express 18 26720
[12] Li C, Dai S, Zhang Q, Shen X, Wang X, Zhang P, Lu L, Wu Y and Lv S 2015 Chin. Phy. B 24 044208
[13] Vanier F, Peter Y A and Rochette M 2014 Opt. Express 22 28731
[14] Yang Z, Wu Y, Zhang X, Zhang W, Xu P and Dai S 2017 IEEE Photon. Technol. Lett. 29 66
[15] Schiller S 1993 Appl. Opt. 32 2181
[16] Lam C C, Leung P T and Young K 1992 J. Opt. Soc. Am. B 9 1585
[17] Wang P, Lee T, Ding M, Dhar A, Hawkins T, Foy P, Semenova Y, Wu Q, Sahu J, Farrell G, Ballato J and Brambilla G 2012 Opt. Lett. 37 728
[18] Peng X, Song F, Kuwata-Gonokami M, Jiang S and Peyghambarian N 2003 Appl. Phys. Lett. 83 5380
[19] Milenko K, Konidakis I and Pissadakis S 2016 Opt. Lett. 41 2185
[20] Dong C H, He L, Xiao Y F, Gaddam V R, Ozdemir S K, Han Z F, Guo G C and Yang L 2009 Appl. Phys. Lett. 94 231119
[1] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[2] Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2020, 29(5): 057502.
[3] Effect of strain on exciton dynamics in monolayer WS2
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生). Chin. Phys. B, 2019, 28(8): 087201.
[4] Tunable 2H-TaSe2 room-temperature terahertz photodetector
Jin Wang(王瑾), Cheng Guo(郭程), Wanlong Guo(郭万龙), Lin Wang(王林), Wangzhou Shi(石旺舟), Xiaoshuang Chen(陈效双). Chin. Phys. B, 2019, 28(4): 046802.
[5] Visible-to-near-infrared photodetector based on graphene-MoTe2-graphene heterostructure
Rui-Xue Hu(户瑞雪), Xin-Li Ma(马新莉), Chun-Ha An(安春华), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(11): 117802.
[6] Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant
Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣). Chin. Phys. B, 2019, 28(11): 118101.
[7] Electronic structure of molecular beam epitaxy grown 1T'-MoTe2 film and strain effect
Xue Zhou(周雪), Zeyu Jiang(姜泽禹), Kenan Zhang(张柯楠), Wei Yao(姚维), Mingzhe Yan(颜明哲), Hongyun Zhang(张红云), Wenhui Duan(段文晖), Shuyun Zhou(周树云). Chin. Phys. B, 2019, 28(10): 107307.
[8] High quality PdTe2 thin films grown by molecular beam epitaxy
En Li(李恩), Rui-Zi Zhang(张瑞梓), Hang Li(李航), Chen Liu(刘晨), Geng Li(李更), Jia-Ou Wang(王嘉鸥), Tian Qian(钱天), Hong Ding(丁洪), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱), Xiao Lin(林晓), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(8): 086804.
[9] Band engineering of double-wall Mo-based hybrid nanotubes
Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 076104.
[10] Recent advances in non-Pb-based group-IV chalcogenides for environmentally-friendly thermoelectric materials
Bing-Sheng Du(杜炳生), Ji-Kang Jian(简基康), Hai-Tao Liu(刘海涛), Jiao Liu(刘骄), Lei Qiu(邱磊). Chin. Phys. B, 2018, 27(4): 048102.
[11] Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure
Xin-Wu Zhang(张心悟), Da-Wei He(何大伟), Jia-Qi He(何佳琪), Si-Qi Zhao(赵思淇), Sheng-Cai Hao(郝生财), Yong-Sheng Wang(王永生), Li-Xin Yi(衣立新). Chin. Phys. B, 2017, 26(9): 097202.
[12] Review of ultrafast spectroscopy studies of valley carrier dynamics in two-dimensional semiconducting transition metal dichalcogenides
Dong Sun(孙栋), Jia-Wei Lai(赖佳伟), Jun-Chao Ma(马骏超), Qin-Sheng Wang(王钦生), Jing Liu (刘晶). Chin. Phys. B, 2017, 26(3): 037801.
[13] Two-dimensional materials for ultrafast lasers
Fengqiu Wang(王枫秋). Chin. Phys. B, 2017, 26(3): 034202.
[14] Photodetectors based on junctions of two-dimensional transition metal dichalcogenides
Xia Wei(魏侠), Fa-Guang Yan(闫法光), Chao Shen(申超), Quan-Shan Lv(吕全山), Kai-You Wang(王开友). Chin. Phys. B, 2017, 26(3): 038504.
[15] Photo-induced athermal phase transitions of HgX (X= S, Se, Te) by ab initio study
Da-hua Ren(任达华), Xin-lu Cheng(程新路), Hong Zhang(张红). Chin. Phys. B, 2016, 25(7): 076401.
No Suggested Reading articles found!