Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 117201    DOI: 10.1088/1674-1056/27/11/117201
Special Issue: SPECIAL TOPIC — 80th Anniversary of Northwestern Polytechnical University (NPU)
SPECIAL TOPIC—80th Anniversary of Northwestern Polytechnical University (NPU) Prev   Next  

Spin Seebeck effect and spin Hall magnetoresistance in the Pt/Y3Fe5O12 heterostructure under laser-heating

Shuanhu Wang(王拴虎)1, Gang Li(李刚)2, Jianyuan Wang(王建元)1, Yingyi Tian(田颖异)1, Hongrui Zhang(张洪瑞)2, Lvkuan Zou(邹吕宽)3, Jirong Sun(孙继荣)2, Kexin Jin(金克新)1
1 Shaanxi Key Laboratory of Condensed Matter Structures and Properties, School of Science, Northwestern Polytechnical University, Xi'an 710072, China;
2 Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 High Magnetic Field Laboratory, Chinese Academy of Science, Hefei 230031, China
Abstract  

In the previous study of longitudinal spin Seebeck effect (LSSE), the thermal gradient was often generated by inserting the sample between the cool bath and the hot bath. For practical use, this method is too cumbersome to be easily integrated into modern electrical circuits. Since the laser can be easily focused into a small region, it will be more convenient and friendly to the integrated circuit. In this paper, we systematically investigate the LSSE and spin Hall magnetoresistance (SMR) of the Pt/Y3Fe5O12 heterostructure under focused laser-heating. We find that the extremely large voltage of inverse spin Hall effect (VISHE) can be obtained by reducing the diameter of laser or increasing the number of light spots. Meanwhile, even under the illumination of the ultraviolet light which will excite the electron from the valence band to the conduction band in yttrium iron garnet (YIG), the magnitude of SMR is nearly constant. It indicates that the spin transport behavior of the adjacent Pt is independent of the electron configuration of YIG. The laser-heating method to generate LSSE will be very promising for modern integrated electronic circuits and will promote the application of spin caloritronics in practice.

Keywords:  spin Seebeck effect      spin Hall magnetoresistance      laser heating      yttrium iron garnet  
Received:  21 June 2018      Revised:  25 July 2018      Accepted manuscript online: 
PACS:  72.25.Ba (Spin polarized transport in metals)  
  73.40.-c (Electronic transport in interface structures)  
  72.10.Di (Scattering by phonons, magnons, and other nonlocalized excitations)  
  75.50.Lk (Spin glasses and other random magnets)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11604265, 51471134, 51572222, and 11704386) and the Fundamental Research Funds for the Central Universities, China (Grant Nos. 3102018zy044 and 3102017jc01001).

Corresponding Authors:  Shuanhu Wang, Kexin Jin     E-mail:  shwang2015@nwpu.edu.cn;jinkx@nwpu.edu.cn

Cite this article: 

Shuanhu Wang(王拴虎), Gang Li(李刚), Jianyuan Wang(王建元), Yingyi Tian(田颖异), Hongrui Zhang(张洪瑞), Lvkuan Zou(邹吕宽), Jirong Sun(孙继荣), Kexin Jin(金克新) Spin Seebeck effect and spin Hall magnetoresistance in the Pt/Y3Fe5O12 heterostructure under laser-heating 2018 Chin. Phys. B 27 117201

[1] Uchida K, Adachi H, Ota T, Nakayama H, Maekawa S and Saitoh E 2010 Appl. Phys. Lett. 97 172505
[2] Ramos R, Kikkawa T, Uchida K, Adachi H, Lucas I, Aguirre M H, Algarabel P, Morellón L, Maekawa S, Saitoh E and Ibarra M R 2013 Appl. Phys. Lett. 102 072413
[3] Uchida K i, Nonaka T, Ota T and Saitoh E 2010 Appl. Phys. Lett. 97 262504
[4] Seki S, Ideue T, Kubota M, Kozuka Y, Takagi R, Nakamura M, Kaneko Y, Kawasaki M and Tokura Y 2015 Phys. Rev. Lett. 115 266601
[5] Wu S M, Pearson J E and Bhattacharya A 2015 Phys. Rev. Lett. 114 186602
[6] Uchida K, Ishida M, Kikkawa T, Kirihara A, Murakami T and Saitoh E 2014 J. Phys.:Condens. Matter 26 343202
[7] Magginetti D, Tian K and Tiwari A 2017 Solid State Commun. 249 34
[8] Han F B, Zhang W X, Peng B and Zhang W L 2015 Acta Phys. Sin. 64 247202(in Chinese)
[9] Mendes J B S, Alves Santos O, Holanda J, Loreto R P, de Araujo C I L, Chang C Z, Moodera J S, Azevedo A and Rezende S M 2017 Phys. Rev. B 96 180415
[10] Boona S R and Heremans J P 2014 Phys. Rev. B 90 064421
[11] Jiang Z, Chang C Z, Masir M R, Tang C, Xu Y, Moodera J S, MacDonald A H and Shi J 2016 Nat. Commun. 7 11458
[12] Huang S Y, Fan X, Qu D, Chen Y P, Wang W G, Wu J, Chen T Y, Xiao J Q and Chien C L 2012 Phys. Rev. Lett. 109 107204
[13] Lu Y M, Cai J W, Huang S Y, Qu D, Miao B F and Chien C L 2013 Phys. Rev. B 87 220409
[14] Kikkawa T, Uchida K, Shiomi Y, Qiu Z, Hou D, Tian D, Nakayama H, Jin X F and Saitoh E 2013 Phys. Rev. Lett. 110 067207
[15] Chen Y T, Takahashi S, Nakayama H, Althammer M, Goennenwein S, Saitoh E and Bauer G 2013 Phys. Rev. B 87 144411
[16] Marmion S R, Ali M, McLaren M, Williams D A and Hickey B J 2014 Phys. Rev. B 89 220404
[17] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E, Goennenwein S T and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[18] Li Z D, He P B and Liu W M 2014 Chin. Phys. B 23 117502
[19] Li H N, Hua Z and Li D F 2017 Chin. Phys. B 26 17502
[20] Guo E J, Cramer J, Kehlberger A, Ferguson C A, MacLaren D A, Jakob G and Kläui M 2016 Phys. Rev. X 6 031012
[21] Kehlberger A, Ritzmann U, Hinzke D, Guo E J, Cramer J, Jakob G, Onbasli M C, Kim D H, Ross C A, Jungfleisch M B, Hillebrands B, Nowak U and Klaui M 2015 Phys. Rev. Lett. 115 096602
[22] Ritzmann U, Hinzke D, Kehlberger A, Guo E J, Kläui M and Nowak U 2015 Phys. Rev. B 92 174411
[23] Weiler M, Althammer M, Czeschka F D, Huebl H, Wagner M S, Opel M, Imort I M, Reiss G, Thomas A, Gross R and Goennenwein S T 2012 Phys. Rev. Lett. 108 106602
[24] Kimling J, Choi G M, Brangham J T, Matalla-Wagner T, Huebner T, Kuschel T, Yang F and Cahill D G 2017 Phys. Rev. Lett. 118 057201
[25] An K, Olsson K S, Weathers A, Sullivan S, Chen X, Li X, Marshall L G, Ma X, Klimovich N, Zhou J, Shi L and Li X 2016 Phys. Rev. Lett. 117 107202
[26] Giles B L, Yang Z, Jamison J S and Myers R C 2015 Phys. Rev. B 92 224415
[27] Wang S H, Li G, Guo E J, Zhao Y, Wang J Y, Zou L K, Yan H, Cai J W, Zhang Z T, Wang M, Tian Y Y, Zheng X L, Sun J R and Jin K X 2018 Phys. Rev. Mater. 2 051401
[28] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[29] Jia X T and Xia K 2011 Acta Phys. Sin. 60 127202(in Chinese)
[30] Wemple S H, Blank S L, Seman J A and Biolsi W A 1974 Phys. Rev. B 9 2134
[31] Vidyasagar R, Alves Santos O, Holanda J, Cunha R O, Machado F L A, Ribeiro P R T, Rodrigues A R, Mendes J B S, Azevedo A and Rezende S M 2016 Appl. Phys. Lett. 109 122402
[32] Wang S, Zou L, Zhang X, Cai J, Wang S, Shen B and Sun J 2015 Nanoscale 7 17812
[33] Cornelissen L J, Shan J and van Wees B J 2016 Phys. Rev. B 94 180402
[34] Ellsworth D, Lu L, Lan J, Chang H, Li P, Wang Z, Hu J, Johnson B, Bian Y, Xiao J, Wu R and Wu M 2016 Nat. Phys. 12 861
[35] Azevedo A, Cunha R O, Estrada F, Alves Santos O, Mendes J B S, Vilela-Leão L H, Rodríguez-Suárez R L and Rezende S M 2015 Phys. Rev. B 92 024402
[36] Cornelissen L J, Liu J, Duine R A, Youssef J B and van Wees B J 2015 Nat. Phys. 11 1022
[37] Sola A, Bougiatioti P, Kuepferling M, Meier D, Reiss G, Pasquale M, Kuschel T and Basso V 2017 Sci. Rep. 7 46752
[38] Kikkawa T, Uchida K i, Daimon S, Qiu Z, Shiomi Y and Saitoh E 2015 Phys. Rev. B 92 064413
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Magnetic triangular bubble lattices in bismuth-doped yttrium iron garnet
Tao Lin(蔺涛), Chengxiang Wang(王承祥), Zhiyong Qiu(邱志勇), Chao Chen(陈超), Tao Xing(邢弢), Lu Sun(孙璐), Jianhui Liang(梁建辉), Yizheng Wu(吴义政), Zhong Shi(时钟), and Na Lei(雷娜). Chin. Phys. B, 2023, 32(2): 027505.
[3] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[4] Field-induced N\'eel vector bi-reorientation of a ferrimagnetic insulator in the vicinity of compensation temperature
Peng Wang(王鹏), Hui Zhao(赵辉), Zhongzhi Luan(栾仲智), Siyu Xia(夏思宇), Tao Feng(丰韬), and Lifan Zhou(周礼繁). Chin. Phys. B, 2021, 30(2): 027501.
[5] Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films
Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东). Chin. Phys. B, 2020, 29(6): 067601.
[6] Magnetization reorientation induced by spin–orbit torque in YIG/Pt bilayers
Ying-Yi Tian(田颖异), Shuan-Hu Wang(王拴虎), Gang Li(李刚), Hao Li(李豪), Shu-Qin Li(李书琴), Yang Zhao(赵阳), Xiao-Min Cui(崔晓敏), Jian-Yuan Wang(王建元), Lv-Kuan Zou(邹吕宽), and Ke-Xin Jin(金克新). Chin. Phys. B, 2020, 29(11): 117504.
[7] Inverse spin Hall effect in ITO/YIG exited by spin pumping and spin Seebeck experiments
Kejian Zhu(朱科建), Weijian Lin(林伟坚), Yangtao Su(苏仰涛), Haibin Shi(石海滨), Yang Meng(孟洋), Hongwu Zhao(赵宏武). Chin. Phys. B, 2019, 28(1): 017201.
[8] Structure dependence of magnetic properties in yttrium iron garnet by metal-organic decomposition method
Yuan Liu(刘园), Xiang Wang(王翔), Jie Zhu(朱杰), Runsheng Huang(黄润生), Dongming Tang(唐东明). Chin. Phys. B, 2017, 26(5): 057501.
No Suggested Reading articles found!