Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114207    DOI: 10.1088/1674-1056/27/11/114207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation

Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发)
Synergetic Innovation Center for Quantum Effects and Application, and Key Laboratory of Low-Dimensional Quantum Structures andQuantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Abstract  

We investigate the entropy squeezing of a two-level atom in the Jaynes-Cummings model, and provide a scheme to generate the sustained optimal entropy squeezing of the atom via non-Hermitian operation. Our results show that the squeezing degree and the persistence time of entropy squeezing of atomic polarization components greatly depend on the non-Hermiticity intensity in non-Hermitian operation. Especially, under a proper choice of non-Hermiticity parameters, the sustained optimal entropy squeezing of the atom can be generated even though the atom is initially prepared in a no entropy squeezing state.

Keywords:  entropy squeezing      non-Hermitian dynamics      quantum optics      Jaynes-Cummings model  
Received:  03 June 2018      Revised:  20 August 2018      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.-a (Quantum information)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11374096).

Corresponding Authors:  Mao-Fa Fang     E-mail:  mffang@hunnu.edu.cn

Cite this article: 

Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发) Generation of sustained optimal entropy squeezing of a two-level atom via non-Hermitian operation 2018 Chin. Phys. B 27 114207

[1] Fang M F, Zhou P and Swain S 2000 J. Mod. Optic. 47 1043
[2] Liu X J, Zhou Y J and Fang M F 2009 Chin. Phys. B 18 2307
[3] Zou Y and Li Y P 2009 Chin. Phys. B 18 2794
[4] Zhou B J, Peng Z H, Jia C X, Jiang C L and Liu X J 2014 Chin. Phys. B 23 120305
[5] Yu M and Fang M F 2016 Quantum Inf. Process. 15 4175
[6] Liu X J, Luo A, Peng Z H, Jia C X, Jiang C L and Zhou B J 2017 Int. J. Theor. Phys. 57 138
[7] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[8] Bender C M, Brody D C and Jones H F 2002 Phys. Rev. Lett. 89 270401
[9] Bender C M, Brody D C, Jones H F and Meister B K 2007 Phys. Rev. Lett. 98 040403
[10] Günther U and Samsonov B F 2008 Phys. Rev. Lett. 101 230404
[11] Lee Y C, Hsieh M H, Flammia S T and Lee R K 2014 Phys. Rev. Lett. 112 130404
[12] Chen S L, Chen G Y and Chen Y N 2014 Phys. Rev. A 90 054301
[13] Brody D C and Graefe E M 2012 Phys. Rev. Lett. 109 230405
[14] Sergi A and Zloshchastiev K G 2013 Int. J. Mod. Phys. B 27 1350163
[15] Zloshchastiev K G and Sergi A 2014 J. Mod. Optic. 61 1298
[16] Sergi A and Zloshchastiev K G 2015 Phys. Rev. A 91 062108
[17] Zloshchastiev K G 2015 Eur. Phys. J. D 69 253
[18] Pati A K, Singh U and Sinha U 2015 Phys. Rev. A 92 052120
[19] Gardas B, Deffner S and Saxena A 2016 Sci. Rep. 6 23408
[20] Bagarello F, Passante R and Trapani C 2016 Non-Hermitian Hamiltonians in Quantum Physics (Switzerland:Springer International Publishing)
[21] Hou T J 2017 Phys. Rev. A 95 013824
[22] Guo Y N, Fang M F, Wang G Y, Hang J and Zeng K 2017 Quantum Inf. Process. 16 301
[23] Zhang S Y, Fang M F and Xu L 2017 Quantum Inf. Process. 16 234
[24] Zhang S Y, Fang M F, Zhang Y L, Guo Y N, Zhao Y J and Tang W W2015 Chin. Phys. B 24 090304
[25] Heiss W D 2004 J. Phys. A-Math. Gen. 37 2455
[1] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[2] Effective Hamiltonian of the Jaynes-Cummings model beyond rotating-wave approximation
Yi-Fan Wang(王伊凡), Hong-Hao Yin(尹洪浩), Ming-Yue Yang(杨明月), An-Chun Ji(纪安春), and Qing Sun(孙青). Chin. Phys. B, 2021, 30(6): 064204.
[3] Steady and optimal entropy squeezing for three types of moving three-level atoms coupled with a single-mode coherent field
Wen-Jin Huang(黄文进) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010304.
[4] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[5] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[6] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[7] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[8] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[9] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[10] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[11] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[12] Entropy squeezing for three-level atom interacting with a single-mode field
Fei-Fan Liu(刘非凡), Mao-Fa Fang(方卯发), Xiong Xu(许雄). Chin. Phys. B, 2019, 28(6): 060304.
[13] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[14] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[15] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
No Suggested Reading articles found!