Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114101    DOI: 10.1088/1674-1056/27/11/114101
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array

Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军)
Air Force Engineering University, Xi'an 710077, China
Abstract  

A novel approach devoted to achieving ultra-wideband radar cross section reduction (RCSR) of a waveguide slot antenna array (WGSAA) while maintaining its radiation performance is proposed. Three kinds of artificial magnetic conductors (AMCs) tiles consisting of three types of basic units resonant at different frequencies are designed and arranged in a novel quadruple-triangle-type configuration to create a composite planar metasurface. The proposed metasurface is characterized by low radar feature over an ultra-wideband based on the principle of phase cancellation. Both simulated and measured results demonstrate that after the composite metasurface is used to cover part of the antenna array, an ultra-wideband RCSR involving in-band and out-of-band is achieved for co-and cross-polarized incident waves based on energy cancellation, while the radiation performance is well retained. The proposed method is simple, low-cost, and easy-to-fabricate, providing a new method for ultra-wideband RCSR of an antenna array. Moreover, the method proposed in this paper can easily be applied to other antenna architectures.

Keywords:  metasurface      polarization-independent artificial magnetic conductor (PIDAMC)      waveguide slot antenna array (WGSAA)      radar cross section reduction  
Received:  26 June 2018      Revised:  27 July 2018      Published:  05 November 2018
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61671464, 61701523, and 61471389).

Corresponding Authors:  Xiang-Yu Cao     E-mail:  1183068955@qq.com

Cite this article: 

Li-Li Cong(丛丽丽), Xiang-Yu Cao(曹祥玉), Tao Song(宋涛), Jun Gao(高军) Ultra-wideband low radar cross-section metasurface and its application on waveguide slot antenna array 2018 Chin. Phys. B 27 114101

[1] Gomory F, Solovyov M, Souc J, Navau C, Prat-Camps J and Sanchez A 2012 Science 335 1466
[2] Davenport C J and Rigelsford J M 2014 IEEE Trans. Antennas Propag. 62 4518
[3] Paquay M, Iriarte J C, Ederra I, Gonzalo R and Maagt P D 2007 IEEE Trans. Antennas Propag. 55 3630
[4] Zhang J, Wang J, Chen M and Zhang Z 2012 IEEE Antennas Wireless. Propag. Lett. 11 1048
[5] Liu Y, Hao Y W, Li K and Gong S X 2016 IEEE Antennas Wireless. Propag. Lett. 15 1028
[6] Liu Y, Li K, Jia Y T, Hao Y W, Gong S X and Guo Y J 2016 IEEE Trans. Antennas Propag. 64 326
[7] Liu X, Gao J, Xu L M, Cao X Y, Zhao Y, and Li S J 2017 IEEE Antennas Wireless Propag. Lett. 16 724
[8] Zhao Y, Cao X Y, Gao J and Li W Q 2014 Microw. Opt. Technol. Lett. 56 158
[9] Huang C, Pan W B and Luo X G 2016 Sci. Rep. 6 23291
[10] Mighani M and Dadashzadeh G 2016 Electron. Lett. 52 1253
[11] Zhao Y, Cao X Y, Gao J, Yao X and Liu X 2016 IEEE Antennas Wireless Propag. Lett. 15 290
[12] Simms S and Fusco V 2008 Electron. Lett. 44 316
[13] Monorchio A, Manara G and Lanuzza L 2002 IEEE Antennas Wireless Propag. Lett. 1 196
[14] De Cos M E, Las-Heras F and Franco M 2009 IEEE Antennas Wireless Propag. Lett. 8 951
[15] ChenWG, Balanis C A and Birtcherm C R 2016 IEEE Trans. Antennas Propag. 64 4133
[16] Saadat S, Adnan M, Mosallaei H and Afshari E 2013 IEEE Trans. Antennas Propag. 61 1210
[17] Zheng Y J, Gao J, Cao X Y, Yuan Z D and Yang H H 2015 IEEE Antennas Wireless Propag. Lett. 14 1582
[18] Chen W G, Balanis C A and Birtcher C R 2015 IEEE Trans. Antennas Propag. 63 2636
[19] Iriarte J C, Pereda A T, Martinez de Falcon J L, Ederra I, Gonzalo R and Peter de Maagt 2013 IEEE Trans. Antennas Propag. 61 6136
[20] Edalati A and Sarabandi K 2014 IEEE Trans. Antennas Propag. 62 747
[21] Green J, Shnitkin H and Bertalan P J 1990 IEEE Trans. Antennas Propag. 38 1161
[22] Cui T J, Qi M Q and Wan X 2014 Light:Science & Applications 3 e218
[1] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[2] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[3] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[4] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[5] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[6] Ultra-wideband linear-to-circular polarization conversion metasurface
Bao-Qin Lin(林宝勤), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), Yan-Wen Wang(王衍文). Chin. Phys. B, 2020, 29(10): 104205.
[7] Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction
Shao-He Li(李绍和), Jiu-Sheng Li(李九生). Chin. Phys. B, 2019, 28(9): 094210.
[8] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[9] Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇). Chin. Phys. B, 2019, 28(3): 034204.
[10] Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials
Ying Liu(刘颖), Yi-Feng Li(李义丰), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(2): 024301.
[11] Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface
Kaiyue Liu(刘凯越), Guangming Wang(王光明), Tong Cai(蔡通), Wenlong Guo(郭文龙), Yaqiang Zhuang(庄亚强), Gang Liu(刘刚). Chin. Phys. B, 2018, 27(8): 084101.
[12] Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface
Bao-Qin Lin(林宝勤), Jian-Xin Guo(郭建新), Bai-Gang Huang(黄百钢), Lin-Bo Fang(方林波), Peng Chu(储鹏), Xiang-Wen Liu(刘湘雯). Chin. Phys. B, 2018, 27(5): 054204.
[13] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[14] Bidirectional asymmetric acoustic focusing with two flat acoustic metasurfaces
Di-Chao Chen(陈帝超), Xing-Feng Zhu(朱兴凤), Qi Wei(魏琦), Da-Jian Wu(吴大建). Chin. Phys. B, 2018, 27(12): 124302.
[15] Metamaterials and metasurfaces for designing metadevices: Perfect absorbers and microstrip patch antennas
Yahong Liu(刘亚红), Xiaopeng Zhao(赵晓鹏). Chin. Phys. B, 2018, 27(11): 117805.
No Suggested Reading articles found!