Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 105206    DOI: 10.1088/1674-1056/27/10/105206
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas

M Shahmansouri, N Khodabakhshi
Department of Physics, Faculty of Science, Arak University, Arak, P. O. Box 38156-8-8349, Iran
Abstract  

Using the generalized viscoelastic fluid model, we derive the dielectric response function in a strongly coupled dusty magnetoplasma which reveals two different dust acoustic (DA) wave modes in the hydrodynamic and kinetic limits. The effects of the strong interaction of dust grains and the external magnetic on these DA modes, as well as on the shear wave are examined. It is found that both the real and imaginary parts of DA waves are significantly modified in strongly coupled dusty magnetoplasmas. The implications of our results to space and laboratory dusty plasmas are briefly discussed.

Keywords:  dusty plasma      strongly coupled plasma      magnetoplasma      dielectric response function  
Received:  29 October 2017      Revised:  05 June 2018      Accepted manuscript online: 
PACS:  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.35.Fp (Electrostatic waves and oscillations (e.g., ion-acoustic waves))  
  52.25.Xz (Magnetized plasmas)  
Corresponding Authors:  M Shahmansouri     E-mail:  mshmansouri@gmail.com

Cite this article: 

M Shahmansouri, N Khodabakhshi On the dielectric response function and dispersion relation in strongly coupled magnetized dusty plasmas 2018 Chin. Phys. B 27 105206

[1] Ikezi H 1986 Phys. Fluids 29 1764
[2] Chu J H and Lin I 1994 Phys. Rev. Lett. 72 4009
[3] Thomas H, Morfill G E, Demmel V, Goree J, Feuerbacher B and Mohlmann D 1994 Phys. Rev. Lett. 73 652
[4] Zheng X H and Earnshaw J C 1995 Phys. Rev. Lett. 75 4214
[5] Thomas H and Morfill G E 1996 J. Vac. Sci. Technol. A 14 501
[6] Thomas H and Morfill G E 1996 Nature 379 806
[7] Melandso F 1996 Phys. Plasmas 3 3890
[8] Wang X and Bhattacharjee A 1997 Phys. Plasmas 4 3759
[9] Kaw P K and Sen A 1998 Phys. Plasmas 5 3552
[10] Mamun A A, Shukla P K and Farid T 2000 Phys. Plasmas 7 2329
[11] Yaroshenko V V, Nosenko V and Morfill G E 2010 Phys. Plasmas 17 103709
[12] Shukla P K and Mamun A A 2001 IEEE Trans. Plasma Sci. 29 221
[13] Mamun A A and Cairns R A 2009 Phys. Rev. E 79 055401
[14] Alinejad H and Mamun A A 2011 Phys. Plasmas 18 073706
[15] Shahmansouri M and Rezaei M 2014 Astrophys. Space Sci. 351 197
[16] El-Labany S K, El-Taibany W F, El-Shamy E F, El-Depsy A and Zedan N A 2012 Phys. Plasmas 19 103708
[17] El-Labany S K, El-Taibany W F, El-Shamy E F and Zedan N A 2014 Phys. Plasmas 21 123710
[18] Shahmansouri M, Farokhi B and Khodabakhshi N 2017 Commun. Theor. Phys. 68 111
[19] Rao N N, Shukla P K and Yu M Y 1990 Planet. Space Sci. 38 543
[20] Barkan A, Merlino R L and D'Angelo N 1995 Phys. Plasmas 2 3563
[21] Misra A P and Chowdhury A R 2006 Phys. Plasmas 13 062307
[22] Misra A P and Chowdhury A R 2006 Eur. Phys. J. D 37 105
[23] Samanta S, Misra A P and Chowdhury A R 2007 Planet. Space Sci. 55 1380
[24] El-Labany S K, El-Shamy E F, El-Taibany W F and Moslem W M 2007 Chaos, Solitons and Fractals. 34 1393
[25] Dorranian D and Sabetkar A 2012 Phys. Plasmas 19 013702
[26] Farid T, Mamun A A, Shukla P K and Mirza A M 2001 Phys. Plasmas 8 1529
[27] Abulwafa E M, Elhanbaly A M, Mahmoud A A and Al-Araby A F 2017 Phys. Plasmas 24 013704
[28] Sabetkar A and Dorranian D 2015 Phys. Plasmas 22 083705
[29] Piel A and Goree J 2006 Phys. Plasmas 13 104510
[30] Shukla P K and Rahman H U 1998 Planet. Space Sci. 46 541
[31] Merlino R L, Barkan A, Thompson C and D'Angelo N 1998 Phys. Plasmas 5 1607
[32] Xie B S and Chen Y P 2004 Phys. Plasmas 11 3519
[33] Kaw P K 1998 Phys. Plasmas 5 1870
[34] Banerjee D, Mylavarapu J S and Chakrabarti N 2010 Phys. Plasmas 17 113708
[35] Pieper J B, Goree and J 1996 Phys. Rev. Lett. 77 3137
[36] Basko M, Kemp A and Vehn J M 2000 Nucl. Fusion 40 59
[37] Deutsch C and Popoff R 2009 Nucl. Instrum. Methods Phys. Res. Sect. A 606 212
[38] Peng F, Brown E F and Truran J W 2007 Astrophys. J. 654 1022
[39] Gozadinos G, Ivlev A V and Boeuf J P 2003 New J. Phys. 5 32
[40] Shahmansouri M and Mamun A A 2015 Phys. Plasmas 22 073709
[41] Melzer A and Puttscher M 2017 Phys. Plasmas 24 053701
[42] Rosenberg M and Kalman G 1997 Phys. Rev. E 56 7166
[43] Kählert H, Ott T, Reynolds A, Kalman G J and Bonitz M 2013 Phys. Plasmas 20 057301
[44] Golden K I, Kalman G and Wyns P 1992 Phys. Rev. A 46 3454
[45] Murillo M S 1998 Phys. Plasmas 5 3116
[46] Nambu M and Nitta H 2002 Phys. Lett. A 300 82
[47] Thomas H, Morfill G E and Tsytovich V N 2003 Plasma Phys. Rep. 29 895
[48] Popel S I, Andreev S N, Gisko A A, Golub A P and Losseva T V 2004 Plasma Phys. Rep. 30 284
[49] Ichimaru S, Iyetomi H and Tanaka S 1987 Phys. Rep. 149 91
[50] Slattery W L, Doolen G D and DeWitt H E 1980 Phys. Rev. A 21 2087
[51] Slattery W L, Doolen G D and DeWitt H E 1982 Phys. Rev. A 26 2255
[52] Abe R 1959 Prog. Theor. Phys. 21 475
[53] Konopka U, Samsonov D, Ivlev A V, Goree J, Steinberg V and Morfill G E 2000 Phys. Rev. E 61 1890
[54] Bandyopadhyay P, Prasad G, Sen A and Kaw P 2007 Phys. Lett. A 368 491
[55] Tsytovich V, Sato N and Morfill G E 2003 New J. Phys. 5 43
[56] Ferrario L, de Martino D and Gänsicke B T 2015 Space Sci. Rev. 191 111
[57] Tremblay P E, Fontaine G, Freytag B, Steiner O, Ludwig H G, Steffen M, Wedemeyer S and Brassard P 2015 Astrophys. J. 812 19
[1] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[2] Long-time evolution of charged grains in plasma under harmonic external force and after being withdrawn
Miao Guan(管苗), Zhi-Dong Chen(陈志东), Meng-Die Li(李梦蝶), Zhong-Mao Liu(刘忠茂), You-Mei Wang(汪友梅), and Ming-Yang Yu(郁明阳). Chin. Phys. B, 2022, 31(2): 025201.
[3] Large-amplitude dust acoustic solitons in an opposite polarity dusty plasma with generalized polarization force
Mahmood A. H. Khaled, Mohamed A. Shukri, and Yusra A. A. Hager. Chin. Phys. B, 2022, 31(1): 010505.
[4] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[5] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[6] Directional motion of dust particles at different gear structuresin a plasma
Chao-Xing Dai(戴超星), Chao Song(宋超), Zhi-Xiang Zhou(周志向), Wen-Tao Sun(孙文涛), Zhi-Qiang Guo(郭志强), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2020, 29(2): 025203.
[7] Crystalline order and disorder in dusty plasmas investigated by nonequilibrium molecular dynamics simulations
Aamir Shahzad, Maogang He, Sheeba Ghani, Muhammad Kashif, Tariq Munir, Fang Yang. Chin. Phys. B, 2019, 28(5): 055201.
[8] Small amplitude double layers in an electronegative dusty plasma with q-distributed electrons
Zhong-Zheng Li(李中正), Juan-Fang Han(韩娟芳), Dong-Ning Gao(郜东宁), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(10): 105204.
[9] Rotation of a single vortex in dusty plasma
Jia Yan(闫佳), Fan Feng(冯帆), Fu-Cheng Liu(刘富成), Ya-Feng He(贺亚峰). Chin. Phys. B, 2017, 26(9): 095202.
[10] Drift vortices in inhomogeneous collisional dusty magnetoplasma
Jian-Rong Yang(杨建荣), Kui Lv(吕岿), Lei Xu(许磊), Jie-Jian Mao(毛杰键), Xi-Zhong Liu(刘希忠), Ping Liu(刘萍). Chin. Phys. B, 2017, 26(6): 065202.
[11] Mode transition in dusty micro-plasma driven by pulsed radio-frequency source in C2H2/Ar mixture
Xiang-Mei Liu(刘相梅), Rui Li(李瑞), Ya-Hui Zheng(郑亚辉). Chin. Phys. B, 2017, 26(4): 045202.
[12] Dust acoustic waves in collisional uniform dense magnetoplasma
Jian-Rong Yang(杨建荣), Ting Xu(徐婷), Jie-Jian Mao(毛杰键), Ping Liu(刘萍), Xi-Zhong Liu(刘希忠). Chin. Phys. B, 2017, 26(1): 015202.
[13] Analysis of electron energy distribution function in a magnetically filtered complex plasma
M K Deka, H Bailung, N C Adhikary. Chin. Phys. B, 2013, 22(4): 045201.
[14] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[15] Effect of multicomponent dust grains in a cold quantum dusty plasma
Yang Xiu-Feng(杨秀峰), Wang Shan-Jin(王善进), Chen Jian-Min(陈建敏), Shi Yu-Ren(石玉仁), Lin Mai-Mai(林麦麦), and Duan Wen-Shan(段文山) . Chin. Phys. B, 2012, 21(5): 055202.
No Suggested Reading articles found!