Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100601    DOI: 10.1088/1674-1056/27/10/100601
GENERAL Prev   Next  

Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence

Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平)
State Key Laboratory of Precision Spectroscopy, School of Physics and Material, East China Normal University, Shanghai 200062, China

The absolute number density of nitrogen dioxide (NO2) seeded in argon is measured with cavity-enhanced laser-induced fluorescence (CELIF) through using a pulsed laser beam for the first time. The cavity ring down (CRD) signal is acquired simultaneously and used for normalizing the LIF signal and determining the relationship between the measured CELIF signal and the NO2 number density. The minimum detectable NO2 density down to (3.6±0.1)×108 cm-3 is measured in 60 s of acquisition time by the CELIF method. The minimum absorption coefficient is measured to be (2.0±0.1)×10-10 cm-1, corresponding to a noise equivalent absorption sensitivity of (2.2±0.1)×10-9 cm-1·Hz-1/2. The experimental system demonstrated here can be further improved in its sensitivity and used for environmental monitoring of outdoor NO2 pollution.

Keywords:  cavity-enhanced laser-induced fluorescence (CELIF)      cavity ring down (CRD)  
Received:  21 May 2018      Revised:  10 August 2018      Accepted manuscript online: 
PACS:  06.20.Dk (Measurement and error theory)  
  42.62.Fi (Laser spectroscopy)  
  07.88.+y (Instruments for environmental pollution measurements)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11504112, 91536218, and 11604100).

Corresponding Authors:  Lian-Zhong Deng     E-mail:

Cite this article: 

Zheng-Hai Yang(杨正海), Yong-Cheng Yang(杨永成), Lian-Zhong Deng(邓联忠), Jian-Ping Yin(印建平) Absolute density measurement of nitrogen dioxide with cavity-enhanced laser-induced fluorescence 2018 Chin. Phys. B 27 100601

[1] Hudson J J, Kara D M, Smallman I J, Sauer B E, Tarbutt M R and Hinds E A 2011 Nature 473 493
[2] Cheng C F, Sun Y R and Hu S M 2015 Chin. Phys. B 24 053301
[3] Stone D, Whalley L K and Heard D E 2012 Chem. Soc. Rev. 41 6348
[4] Hudson E R, Ticknor C, Sawyer B C, Taatjes C A, Lewandowski H J, Bochinski J R, Bohn J L and Ye J 2006 Phys. Rev. A 73 063404
[5] Delon A, Georges R and Jost R 1995 J. Chem. Phys. 103 7740
[6] Richter A, Burrows J P, Nüß H, Granier C and Niemeier U 2005 Nature 437 129
[7] Logan J A, Prather M J, Wofsy S C and McElroy M B 1981 J. Geophys. Res. 86 7210
[8] Thornton J A, Wooldridge P J, Cohen R C, Williams E J, Hereid D, Fehsenfeld F C, Stutz J and Alicke B 2003 J. Geophys. Res. 108 4496
[9] Washenfelder R A, Attwood A R, Flores J M, Zarzana K J, Rudich Y and Brown S S 2016 Atmos. Meas. Tech. 9 41
[10] Venables D S, Gherman T, Orphal J, Wenger J C and Ruth A A 2006 Environ. Sci. Technol. 40 6758
[11] Werle P, Mücke R and Slemr F 1993 Appl. Phys. B 57 131
[12] Osthoff H D, Brown S S, Ryerson T B, Fortin T J, Lerner B M, Williams E J, Pettersson A, Baynard T, Dubé W P, Ciciora S J and Ravishankara A R 2006 J. Geophys. Res. 111 D12305
[13] Wojtas J, Mikolajczyk J and Bielecki Z 2013 Sensors 13 7570
[14] Brown S S, Stark H and Ravishankara A R 2002 Appl. Phys. B 75 173
[15] Brown S S, Stark H, Ciciora S J and Ravishankara A R 2001 Geophys. Res. Lett. 28 3227
[16] Kebabian P L, Wood E C, Herndon S C and Freedman A 2008 Environ. Sci. Technol. 42 6040
[17] Matsumi Y, Murakami S, Kono M, Takahashi K, Koike M and Knodo Y 2001 Anal. Chem. 73 5485
[18] Matsumoto J and Kajii Y 2003 Atomos. Environ. 37 4847
[19] Bradshaw J, Davis D, Crawford J, Chen G, Shetter R, Müller M, Gregory G, Sachse G, Blake D, Heikes B, Singh H, Mastromarino J and Sandholm S 1999 Geophys. Res. Lett. 26 471
[20] Ryerson T B, Williams E J and Fehsenfeld F C 2000 J. Geophys. Res. 105 26447
[21] Sanders S E, Willis O R, Nahler N H and Wrede E 2018 J. Chem. Phys. 149 014201
[22] Mizouri A, Deng L Z, Eardley J S, Nahler N H, Wrede E and Carty D 2013 Phys. Chem. Chem. Phys. 15 19575
[23] Harrison R M 2018 Npj Clim. Atmos. Sci. 1 5
[24] Sugimoto N, Takeuchi N, Iijima H, Arai T and Takezawa S 1984 Chem. Phys. Lett. 106 403
[25] Vandaele A C, Hermans C, Simon P C, Van Roozendael M, Guilmot J M, Carleer M and Colin R 1996 J. Atmos. Chem. 25 289
[26] Evertsen R, Staicu A, Dam N, Van Vliet A and Ter Meulen J J 2002 Appl. Phys. B:Lasers Opt. 74 465
[27] Burrows J P, Dehn A, Deters B, Himmelmann S, Richter A, Voigt S and Orphal J 1998 J. Quantun. Spectrosc. Radiat. Transfer 60 1025
[1] ADC border effect and suppression of quantization error in the digital dynamic measurement
Li-Na Bai(白丽娜), Hai-Dong Liu(刘海东), Wei Zhou(周渭), Yong Zhang(张勇), Hong-Qi Zhai(翟鸿启), Zhen-Jian Cui(崔震健), Ming-Ying Zhao(赵明英), Xiao-Qian Gu(谷小倩), Bei-Ling Liu(刘蓓玲), Li-Bei Huang(黄李贝). Chin. Phys. B, 2017, 26(9): 090601.
[2] Evaluation of the frequency instability limited by Dick effect in the microwave 199Hg+ trapped-ion clock
Yi-He Chen(陈义和), Lei She(佘磊), Man Wang(汪漫), Zhi-Hui Yang(杨智慧), Hao Liu(柳浩), Jiao-Mei Li(李交美). Chin. Phys. B, 2016, 25(12): 120601.
[3] Data point selection for weighted least square fitting of cavity decay time constant
Xing He(何星), Hu Yan(晏虎), Li-Zhi Dong(董理治), Ping Yang(杨平), Bing Xu(许冰). Chin. Phys. B, 2016, 25(1): 014211.
[4] Characteristic of femtosecond laser-pulsed digital holography
Shi Bing-Chuan, Wang Xiao-Lei, Guo Wen-Gang, Song Li-Pei. Chin. Phys. B, 2015, 24(8): 084202.
[5] Research and application of regular phenomenon between periodic signals
Ye Yun-Xia, Xuan Zong-Qiang, Gu Jun-Shan, Xuan Yong. Chin. Phys. B, 2014, 23(12): 120601.
[6] Improved frequency standard via weighted graph states
Xue Peng. Chin. Phys. B, 2012, 21(10): 100306.
[7] Chaos and quantum Fisher information in the quantum kicked top
Wang Xiao-Qian, Ma Jian, Zhang Xi-He, Wang Xiao-Guang. Chin. Phys. B, 2011, 20(5): 050510.
[8] Phenomena of optic-bound effect on fibre optic gyro
Song Ning-Fang, Zhang Chun-Xi, Jin Jing. Chin. Phys. B, 2007, 16(3): 735-739.
No Suggested Reading articles found!