Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(10): 100204    DOI: 10.1088/1674-1056/27/10/100204
GENERAL Prev   Next  

Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays

Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生)
School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  

In this paper, a modified sub-gridding scheme that hybridizes the conventional finite-difference time-domain (FDTD) method and the unconditionally stable locally one-dimensional (LOD) FDTD is developed for analyzing the periodic metallic nanoparticle arrays. The dispersion of the metal, caused by the evanescent wave propagating along the metal-dielectric interface, is expressed by the Drude model and solved with a generalized auxiliary differential equation (ADE) technique. In the sub-gridding scheme, the ADE-FDTD is applied to the global coarse grids while the ADE-LOD-FDTD is applied to the local fine grids. The time step sizes in the fine-grid region and coarse-grid region can be synchronized, and thus obviating the temporal interpolation of the fields in the time-marching process. Numerical examples about extraordinary optical transmission through the periodic metallic nanoparticle array are provided to show the accuracy and efficiency of the proposed method.

Keywords:  locally one-dimensional finite-difference time-domain      metallic nanoparticle      sub-gridding      surface plasmon polaritons  
Received:  27 April 2018      Revised:  30 July 2018      Published:  05 October 2018
PACS:  02.70.Bf (Finite-difference methods)  
  02.60.Cb (Numerical simulation; solution of equations)  
  92.60.Ta (Electromagnetic wave propagation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61471105 and 61331007).

Corresponding Authors:  Wei Shao     E-mail:  weishao@uestc.edu.cn

Cite this article: 

Tu-Lu Liang(梁图禄), Wei Shao(邵维), Xiao-Kun Wei(魏晓琨), Mu-Sheng Liang(梁木生) Hybrid sub-gridding ADE-FDTD method of modeling periodic metallic nanoparticle arrays 2018 Chin. Phys. B 27 100204

[1] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[2] Porto J A, Garcia-Vidal F J and Pendry J B 1999 Phys. Rev. Lett. 83 2845
[3] Min C J, Wang P, Chen C C, Deng Y, Lu Y H, Ming H, Ning T Y, Zhou Y L and Yang G Z 2008 Opt. Lett. 33 869
[4] Khanikaev A B, Mousavi S H, Shvets G and Kivshar Y S 2010 Phys. Rev. Lett. 105 126804
[5] Moreno E, Martin-Moreno L and Garcia-Vidal F J 2006 J. Opt. A Pure Appl. Opt. 8 S94
[6] Martin-Moreno L, Garcia-Vidal F J, Lezec H J, Pellerin K M, Thio T, Pendry J B and Ebbesen T W 2001 Phys. Rev. Lett. 86 1114
[7] Liu H T and Lalanne P 2008 Nature 452 728
[8] Genet C and Ebbesen T W 2007 Nature 445 39
[9] Gordon R, Sinton D, Kavanagh K L and Brolo A G 2008 Acc. Chem. Res. 41 1049
[10] Yang J L, Li R P, Han J H and Huang M J 2016 Chin. Phys. B 25 083301
[11] Li Q B, Wu R X, Yang Y and Sun H L 2013 Chin. Phys. Lett. 30 074208
[12] Zhuan S X, Ma X K 2012 Acta Phys. Sin. 61 110206 (in Chinese)
[13] Li L Q, Shi Y X, Wang F and Wei B 2012 Acta Phys. Sin. 61 125201 (in Chinese)
[14] Taflove A and Hagness S C 2000 Computational Electrodynamics:The Finite-Difference Time-Domain Method (Norwood, MA:Artech House)
[15] Namiki T 1999 IEEE Trans. Microw. Theory Tech. 47 2003
[16] Zheng F H, Chen Z Z and Zhang J Z 1999 IEEE Microw. Guided Wave Lett. 9 441
[17] Lee J and Fornberg B 2003 J. Comput. Appl. Math. 158 485
[18] Lee J and Fornberg B 2004 J. Comput. Appl. Math. 166 497
[19] Gao L, Zhang B and Liang D 2007 J. Comput. Appl. Math. 205 207
[20] Shibayama J, Muraki M, Yamauchi J and Nakano H 2005 Electron. Lett. 41 1046
[21] Nascimento V E D, Borges B H V and Teixeira F L 2006 IEEE Microw. Wireless Compon. Lett. 16 398
[22] Wei X K, Shao W, Shi S B, Zhang Y and Wang B Z 2015 Chin. Phys. B 24 070203
[23] Sun G and Trueman C W 2004 IEEE Trans. Anten. Propag. 52 2963
[24] Sun G and Truneman C W 2006 IEEE Trans. Microw. Theory Tech. 54 2275
[25] Shi S B, Shao W, Wei X K, Yang X S and Wang B Z 2016 IEEE Microw. Theory Tech. 64 4082
[26] Ahmed I, Chua E K, Li E P and Chen Z Z 2008 IEEE Trans. Anten. Propag. 56 3596
[27] Zheng F and Chen Z 2001 IEEE Trans. Microw. Theory Tech. 49 1006
[28] Ahmed I, Chun E K and Li E P 2010 IEEE Trans. Anten. Propag. 58 3983
[29] Chevalier M W, Luebbers R J and Cable V P 1997 IEEE Trans. Anten. Propag. 45 411
[30] Wang B Z, Wang Y, Yu W and Mittra R 2001 IEEE Trans. Adv. Packag. 24 528
[31] Gray S K and Kupka T 2003 Phys. Rev. B 68 045415
[32] Liang T L, Shao W, Shi S B and Ou H 2016 IEEE Photon. J. 8 7804710
[33] Kulas L and Mrozowski M 2008 Proc. 38$th European Microwave Conf. 658
[34] Palik E D 1982 Handbook of optical constants in solids (Academic)
[1] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[2] Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing
Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤). Chin. Phys. B, 2020, 29(6): 067303.
[3] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[4] Structural and thermal stabilities of Au@Ag core-shell nanoparticles and their arrays: A molecular dynamics simulation
Hai-Hong Jia(贾海洪), De-Liang Bao(包德亮), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(4): 048701.
[5] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[6] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[7] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[8] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
[9] Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure
Le Yu(余乐), Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Xiao Xiong(熊霄), Lan-Tian Feng(冯兰天), Ming Li(李明), Guo-Ping Guo(郭国平), Guang-Can Guo(郭光灿), Xi-Feng Ren(任希锋). Chin. Phys. B, 2018, 27(4): 047302.
[10] Geometrical condition for observing Talbot effect in plasmonics infinite metallic groove arrays
Afshari-Bavil Mehdi, Xiao-Ping Lou(娄小平), Ming-Li Dong(董明利), Chuan-Bo Li(李传波), Shuai Feng(冯帅), Parsa Saviz, Lian-Qing Zhu(祝连庆). Chin. Phys. B, 2018, 27(12): 124204.
[11] Coupling-induced spectral splitting for plasmonic sensing with ultra-high figure of merit
Hua Lu(陆华), Yi-Cun Fan(范奕村), Si-Qing Dai(戴思清), Dong Mao(毛东), Fa-Jun Xiao(肖发俊), Peng Li(李鹏), Jian-Lin Zhao(赵建林). Chin. Phys. B, 2018, 27(11): 117302.
[12] Negative-index dispersion and accidental mode degeneracy inan asymmetric spoof–insulator–spoof waveguide
Li-li Tian(田莉莉), Jian-long Liu(刘建龙), Ke-ya Zhou(周可雅), Yang Gao(高扬), Shu-tian Liu(刘树田). Chin. Phys. B, 2017, 26(7): 078401.
[13] Structural optimization of Au-Pd bimetallic nanoparticles with improved particle swarm optimization method
Gui-Fang Shao(邵桂芳), Meng Zhu(朱梦), Ya-Li Shangguan(上官亚力), Wen-Ran Li(李文然), Can Zhang(张灿), Wei-Wei Wang(王玮玮), Ling Li(李玲). Chin. Phys. B, 2017, 26(6): 063601.
[14] Thermal emission properties of one-dimensional grating with different parameters
Weixin Lin(林伟新), Guozhou Li(李国洲), Qiang Li(李强), Hongjin Hu(胡宏锦), Fang Han(韩防), Fanwei Zhang(张樊伟), Lijun Wu(吴立军). Chin. Phys. B, 2017, 26(5): 057301.
[15] Plasmonically induced reflection in metal-insulator-metal waveguides with two silver baffles coupled square ring resonator
Zhi-Dong Zhang(张志东), Lian-Jun Ma(马连俊), Fei Gao(高飞), Yan-Jun Zhang(张彦军), Jun Tang(唐军), Hui-Liang Cao(曹慧亮), Bin-Zhen Zhang(张斌珍), Ji-Cheng Wang(王继成), Shu-Bin Yan(闫树斌), Chen-Yang Xue(薛晨阳). Chin. Phys. B, 2017, 26(12): 124212.
No Suggested Reading articles found!