Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017103    DOI: 10.1088/1674-1056/27/1/017103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z=S, Se, and Te)

Hai-Ming Huang(黄海铭), Chuan-Kun Zhang(张传坤), Ze-Dong He(贺泽东), Jun Zhang(张俊), Jun-Tao Yang(杨俊涛), Shi-Jun Luo(罗时军)
School of Science and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan 442002, China
Abstract  The electronic structures, magnetic properties, half-metallicity, and mechanical properties of half-Heulser compounds CoCrZ (Z=S, Se, and Te) were investigated using first-principles calculations within generalized gradient approximation based on the density function theory. The half-Heusler compounds show half-metallic properties with a half-metallic gap of 0.15 eV for CoCrS, 0.10 eV for CoCrSe, and 0.31 eV for CoCrTe at equilibrium lattice constant, respectively. The total magnetic moments are 3.00μB per formula unit, which agrees well with the Slater-Pauling rule. The half-metallicity, elastic constants, bulk modulus, shear modulus, Pough's ratio, Frantesvich ratio, Young's modulus, Poisson's ratio, and Debye temperature at equilibrium lattice constant and versus lattice constants are reported for the first time. The results indicate that the half-Heulser compounds CoCrZ (Z=S, Se, and Te) maintain the perfect half-metallic and mechanical stability within the lattice constants range of 5.18-5.43 Å for CoCrS, 5.09-5.61 Å for CoCrSe, and 5.17-6.42 Å for CoCrTe, respectively.
Keywords:  half-Heusler      half-metallicity      elastic constants      first-principles     
Received:  03 November 2017      Published:  05 January 2018
PACS:  71.20.Be (Transition metals and alloys)  
  75.50.-y (Studies of specific magnetic materials)  
  62.20.de (Elastic moduli)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11647133 and 11674113), the Natural Science Foundation of Hubei Province, China (Grant Nos. 2017CFB740 and 2014CFB631), the Scientific Research Items Foundation of Hubei Educational Committee, China (Grant Nos. Q20141802, Q20161803, B2016091, and D20171803), and Hubei Provincial Collaborative Innovation Center for Optoelectronics, China.
Corresponding Authors:  Hai-Ming Huang     E-mail:  smilehhm@163.com

Cite this article: 

Hai-Ming Huang(黄海铭), Chuan-Kun Zhang(张传坤), Ze-Dong He(贺泽东), Jun Zhang(张俊), Jun-Tao Yang(杨俊涛), Shi-Jun Luo(罗时军) Electronic and mechanical properties of half-metallic half-Heusler compounds CoCrZ (Z=S, Se, and Te) 2018 Chin. Phys. B 27 017103

[1] Lv S H, Li H P, Liu X J, Han D M, Wu Z J and Meng J 2010 J. Phys. Chem. C 114 16710
[2] Zhang M, Dai X F, Hu H M, Liu G D, Cui Y T, Liu Z H, Chen J G, Wang J L and Wu G H 2003 J. Phys. -Condens. Mat. 15 7891
[3] Luo H Z, Zhu Z Y, Liu G D, Xu S F, Wu G H, Liu H Y, Qu J P and Li Y X 2008 J. Magn. Magn. Mater. 320 421
[4] Zhang W Y, Kharel P S, Skomski R, Valloppilly S, Li X Z and Sellmyer D J 2016 AIP Adv. 6 056218
[5] Sakamaki M, Konishi T and Ohta Y 2009 Phys. Rev. B 80 024416
[6] Hasegawa K, Isobe M, Yamauchi T, Ueda H, Yamaura J, Gotou H, Yagi T, Sato H and Ueda Y 2009 Phys. Rev. Lett. 103 146403.
[7] Baral M, Banik S, Chakrabarti A, Phase D M and Ganguli T 2015 J. Alloys Compd. 645 112
[8] Kong B, Chen X R, Yu J X and Cai C L 2011 J. Alloys Compd. 509 2611
[9] Jamal M, Abu-Jafar M S and Resha A H 2016 J. Alloys Compd. 667 151
[10] Hirohata A and Takanashi K 2014 J. Phys. D-Appl. Phys. 47 193001
[11] Galanakis I, Dederichs P H and Papanikolaou N 2002 Phys. Rev. B 66 134428
[12] Rozale H, Lakdja A, Amar A, Chahed A and Benhelal O 2013 Comput. Mater. Sci. 69 229
[13] Gao Y C, Wang X T and Habib R 2015 Chin. Phys. B 24 067102
[14] de Groot R A, Mueller F M, Van Engen P G and Buschow K H J 1983 Phys. Rev. Lett. 50 2024
[15] Sattar Z A, Rashid M, Hashmi M R, Ahmad S A, Imran M and Hussain F 2016 Chin. Phys. B 25 107402
[16] Graf T, Felser C and Parkin S S P 2011 Prog. Solid State Chem. 39 1
[17] Saito T, Katayama T, Ishikawa T, Yamamoto M, Asakura D, Koide T, Miura Y and Shirai M 2010 Phys. Rev. B 81 144417
[18] Luo H, Liu H, Yu X, Li Y, Zhu W, Wu G, Zhu X, Jiang C and Xu H 2009 J. Magn. Magn. Mater. 321 1321
[19] Missoum A, Seddik T, Murtaza G, Khenata R, Bouhemadou A, Al-Douri Y, Abdiche A, Meradji H and Baltache H 2014 Can. J. Phys. 92 1105
[20] Yao Z Y, Zhang Y S and Yao K L 2012 Appl. Phys. Lett. 101 062402
[21] Yao Z Y, Sun L, Pan M M and Sun S S 2016 Acta Phys. Sin. 65 127501 (in Chinese)
[22] Huang H M, Luo S J and Xiong Y C 2017 J. Magn. Magn. Mater. 438 5
[23] Feng L, Liu E K, Zhang W X, Wang W H and Wu G H 2014 J. Magn. Magn. Mater. 351 92
[24] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[25] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Perdew J P and Wang Y 1986 Phys. Rev. B 33 8800
[28] Nanda B R K and Dasgupta I 2003 J. Phys. -Condens. Mat. 15 7307
[29] Murnaghan F D 1944 Natl. Acad. Sci. 30 244
[30] Li Y, Yuan H K, Xia J, Zhong M M, Kuang A L, Wang G Z, Zheng X R and Chen H 2015 Eur. Phys. J. Appl. Phys. 70 31001
[31] Fine M E, Brown L D and Marcus H L 1984 Scr. Metall. 18 951
[32] Chen X R, Zhong M M, Feng Y, Zhou Y, Yuan H K and Chen H 2015 Phys. Status Solidi B 252 2830
[33] Yu W Y, Wang N, Xiao X B, Tang B Y, Peng L M and Ding W J 2009 Solid State Sci. 11 1400
[34] Pugh S F 1954 Philos. Mag. A 45 823
[35] Degheidy A R and Elkenany E B 2017 Chin. Phys. B 26 086103
[36] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[37] Li X F, Chen X R, Meng C M and Ji G F 2006 Solid State Commun. 139 197
[38] Yip S, Li J, Tang M and Wang J 2001 Mater. Sci. Eng. A 317 236
[39] Gu J B, Wang C J, Zhang W X, Sun B, Liu G Q, Liu D D and Yang X D 2016 Chin. Phys. B 25 126103
[1] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[2] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[3] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[4] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[5] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[6] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[7] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[8] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[9] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[10] First-principles calculation of influences of La-doping on electronic structures of KNN lead-free ceramics
Ting Wang(王挺), Yan-Chen Fan(樊晏辰), Jie Xing(邢洁), Ze Xu(徐泽), Geng Li(李庚), Ke Wang(王轲), Jia-Gang Wu(吴家刚), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2020, 29(6): 067702.
[11] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[12] Ab initio calculations on oxygen vacancy defects in strained amorphous silica
Bao-Hua Zhou(周保花), Fu-Jie Zhang(张福杰), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(4): 047103.
[13] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[14] First-principles investigation on ideal strength of B2 NiAl and NiTi alloys
Chun-Yao Zhang(张春尧), Fu-Yang Tian(田付阳), Xiao-Dong Ni(倪晓东). Chin. Phys. B, 2020, 29(3): 036201.
[15] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
No Suggested Reading articles found!