Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 017101    DOI: 10.1088/1674-1056/27/1/017101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide

Mei Tang(汤梅)1,2, Jia-Xiang Shang(尚家香)1, Yue Zhang(张跃)1
1 School of Materials Science & Engineering, Beihang University, Beijing 100191, China;
2 Journal Publishing Center of Tsinghua University Press, Beijing 100084, China
Abstract  The electronic structural, effective masses of carriers, and optical properties of pure and La-doped Cd2SnO4 are calculated by using the first-principles method based on the density functional theory. Using the GGA+U method, we show that Cd2SnO4 is a direct band-gap semiconductor with a band gap of 2.216 eV, the band gap decreases to 2.02 eV and the Fermi energy level moves to the conduction band after La doping. The density of states of Cd2SnO4 shows that the bottom of the conduction band is composed of Cd 5s, Sn 5s, and Sn 5p orbits, the top of the valence band is composed of Cd 4d and O 2p, and the La 5d orbital is hybridized with the O 2p orbital, which plays a key role at the conduction band bottom after La doping. The effective masses at the conduction band bottom of pure and La-doped Cd2SnO4 are 0.18m0 and 0.092m0, respectively, which indicates that the electrical conductivity of Cd2SnO4 after La doping is improved. The calculated optical properties show that the optical transmittance of La-doped Cd2SnO4 is 92%, the optical absorption edge is slightly blue shifted, and the optical band gap is increased to 3.263 eV. All the results indicate that the conductivity and optical transmittance of Cd2SnO4 can be improved by doping La.
Keywords:  transparent conducting oxides      electronic band structure      first-principle calculations      optical properties  
Received:  23 August 2017      Revised:  18 October 2017      Published:  05 January 2018
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.-e (Optical properties of bulk materials and thin films)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Corresponding Authors:  Yue Zhang     E-mail:  zhangy@buaa.edu.cn

Cite this article: 

Mei Tang(汤梅), Jia-Xiang Shang(尚家香), Yue Zhang(张跃) Density functional theory analysis of electronic structure and optical properties of La-doped Cd2SnO4 transparent conducting oxide 2018 Chin. Phys. B 27 017101

[1] Badeker K 1907 Ann. Phys. 22 749
[2] Chopra K L, Major S and Pandya D K 1983 Thin Solid Films 102 1
[3] Niu M, Cheng D J, Huo L J and Shao X H 2012 J. Alloys Compd. 539 221
[4] Jeyadheepan K, Thamilselvan M, Kim K and Sanjeeviraja C 2015 J. Alloys Compd. 620 185
[5] Al-Baradi A M, El-Nahass M M, El-Raheem M M A, Atta A A and Hassanien A M 2014 Radiat. Phys. Chem. 103 227
[6] Kammler D R, Mason T O and Poeppelmeier K R 2000 Chem. Mater. 121 954
[7] Xu J, Huang S P and Wang Z S 2009 Solid State Commun. 149 527
[8] Krishnakumar V, Ramamurthi K, Kumaravel R and Santhakumar K 2009 Curr. Appl. Phys. 9 467
[9] Godines C D, Castanedo C T, Pérez R C, Delgado G T and Ángel O Z 2014 Sol. Energy Mater. Sol. Cells 128 150
[10] Sidorak A V, Ivanov V V and Shubin A A 2011 Mater. Sci. Appl. 2 1219
[11] Zhou W, Liu L J, Yuan M Y, Song Q G and Wu P 2012 Comput. Mater. Sci. 54 109
[12] Rezkallah T, Chemam F and Djabri I 2017 Chin. Phys. B 26 027102
[13] Wang S, Du Y L and Liao W H 2017 Chin. Phys. B 26 017806
[14] Farooq R, Mahmood T and Anwar A W 2016 Superlattice. Microst. 90 165
[15] Clark S J and Robertson J 2010 Phys. Rev. B 82 085208
[16] Deng J J, Liu B, Gu M, Liu X L, Huang S M and Ni C 2012 Acta Phys. Sin. 61 036105 (in Chinese)
[17] Du Y J, Chang B K, Zhang J J, Li B, and Wang X H 2012 Acta. Phys. Sin. 61 067101 (in Chinese)
[18] Liu D, Ren S Q, Ma X, Liu C, Wu L L, Li W, Zhang J Q and Feng L H. 2017 RSC Adv. 7 8295
[19] Dinesh S, Anandan M, Premkumar V K, Barathan S, Sivakumar G and Anandhan N 2016 Mater. Sci. Eng. B 214 37
[20] Velusamy P, Ramesh Babu R, Ramamurthi K, Elangovan E and Viegas J 2017 J. Alloy. Compd. 708 804
[21] Khatun M R, Hossain M M, Ali M A and Jahan N 2017 Chin. Phys. B 26 033102
[22] Slassi A 2015 Optik 126 4751
[23] Zhang X D, Guo M L and Liu C L 2008 Appl. Phys. Lett. 93 012103
[24] Slassi A 2015 Opt. Quant. Electron. 47 2465
[25] Wu H C, Peng Y C and Shen T P 2012 Materials 5 2088
[26] Zhang Y J, Yan J L and Zhao G 2010 Physica B 405 3899
[27] Zhang H J, Liu L and Zhou Z 2012 Phys. Chem. Chem. Phys. 14 1286
[28] Li X N, Gessert T A and Coutts T 2004 Appl. Surface Sci. 223 138
[29] Han J C, Gao W and Zhu J Q 2007 Phys. Rev. B 75 101
[30] Du J J and Li W 2012 Adv. Mater. Res. 476-478 1154
[31] Yoffe A D 2001 Adv. Phys. 50 1
[1] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[2] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[3] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[4] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[5] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[6] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[7] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[8] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[9] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[10] Quantum density functional theory studies of structural, elastic, and opto-electronic properties of ZMoO3 (Z=Ba and Sr) under pressure
Saad Tariq, A A Mubarak, Saher Saad, M Imran Jamil, S M Sohail Gilani. Chin. Phys. B, 2019, 28(6): 066101.
[11] Interlayer distance effects on absorption coefficient and refraction index change in p-type double-δ-doped GaAs quantum wells
H Noverola-Gamas, L M Gaggero-Sager, O Oubram. Chin. Phys. B, 2019, 28(12): 124207.
[12] Physical properties of ternary thallium chalcogenes Tl2MQ3 (M=Zr, Hf; Q=S, Se, Te) via ab-initio calculations
Engin Ateser, Oguzhan Okvuran, Yasemin Oztekin Ciftci, Haci Ozisik, Engin Deligoz. Chin. Phys. B, 2019, 28(10): 106301.
[13] Band engineering of double-wall Mo-based hybrid nanotubes
Lei Tao(陶蕾), Yu-Yang Zhang(张余洋), Jiatao Sun(孙家涛), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2018, 27(7): 076104.
[14] Effect of pressure on the elastic properties and optoelectronic behavior of Zn4B6O13: First-principles investigation
Pei-Da Wang(王培达), Zhen-Yuan Jia(贾镇源), Yu-Han Zhong(钟玉菡), Hua-Yue Mei(梅华悦), Chun-Mei Li(李春梅), Nan-Pu Cheng(程南璞). Chin. Phys. B, 2018, 27(5): 057101.
[15] Ab-initio calculations of structural, electronic, and optical properties of Zn3(VO4)2
Nisar Ahmed, S Mukhtar, Wei Gao, Syed Zafar Ilyas. Chin. Phys. B, 2018, 27(3): 033101.
No Suggested Reading articles found!