Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 014206    DOI: 10.1088/1674-1056/27/1/014206

Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity

Min Liu(刘敏)1,2, Jingyun Hou(侯静云)1, Xu Yang(杨虚)1, Bingyue Zhao(赵昺玥)1, Ping Shum3
1 College of Communication Engineering, Chongqing University, Chongqing 400044, China;
2 Ministry of Education Key Laboratory of Optoelectronic Technology and Systems, Chongqing University, Chongqing 400044, China;
3 School of Electrical & Electronic Engineering, Nanyang Technological University, Singapore
Abstract  A new type of V-shaped photonic crystal fiber with elliptical air-holes is proposed to realize simultaneous high birefringence and nonlinearity at a wavelength of 1.55 μm. The full vector finite element method was adopted to investigate its characteristics, including birefringence, nonlinearity, and dispersion. The PCF exhibited a very high birefringence of 2.89×10-2 and very high nonlinear coefficient of 102.69 W-1·km-1. In particular, there were two zero-dispersion wavelengths (ZDWs) in the visible (X:640-720 nm and Y:730-760 nm) and near-infrared regions (X:1050-1606 nm and Y:850-1500 nm). The combination of high birefringence and nonlinearity allowed the PCF to maintain the polarization state and generate a broadband super continuum, with potential applications in nonlinear optics.
Keywords:  photonic crystal fiber      birefringence      nonlinearity      zero dispersion  
Received:  22 June 2017      Revised:  18 September 2017      Published:  05 January 2018
PACS:  42.81.Gs (Birefringence, polarization)  
  42.65.-k (Nonlinear optics)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61475029).
Corresponding Authors:  Min Liu     E-mail:

Cite this article: 

Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity 2018 Chin. Phys. B 27 014206

[1] Knight J C, Birks T A, Russell P S J and Atkin D M 1996 Opt. Lett. 21 1547
[2] Cregan R F, Mangan B J, Knight J C, Birks T A, Russell P S J, Roberts P J and Allan D C 1999 Science 285 1537
[3] Kim S E, Kim B H, Lee C G, Lee S, Oh K and Kee C S 2012 Opt. Express 20 1385
[4] Yang T Y, Wang E L, Jiang H M, Hu Z J and Xie K 2015 Opt. Express 23 8329
[5] Wu M, Liu H R and Huang D X 2007 Study On Optical Communications 5 45 (in Chinese)
[6] Gangwar R K, Mishra S S and Singh V K 2014 Optik 125 1641
[7] Zografopoulos D C, Vázquez C, Kriezis E E and Yioultsis T V 2011 Opt.Express. 19 21680
[8] Hasan M R, Anower M S and Hasan M I 2016 Opt. Engineering 55 056107
[9] Hilligsøe K M, Andersen T V, Paulsen H N, Nielsen C K and Molmer K 2004 Opt. Express 12 1045
[10] Fang L, Zhao J L, Gan X T, Li P and Zhang X J 2010 Acta Photon. Sin. 39 1921
[11] Xu Q, Miao R C and Zhang Y N 2012 Acta Phys. Sin. 61 234210 (in Chinese)
[12] Cao Y, Li R M and Tong Z R 2013 Acta Phys. Sin. 62 084215 (in Chinese)
[13] Hu D J J, Shum P P, Lu C and Ren G B 2009 Opt. Commun. 282 4072
[14] Zhou M H and Huang Y L 2016 Acta Photon. Sin. 45 0306002 (in Chinese)
[15] Issa N A, van Eijkelenborg M A, Fellew M, Cox F, Henry G and Large M C J 2004 Opt. Lett. 29 1336
[16] Li D, Liu M, Jian D, Liao Z Y and He D D 2012 Chin. J. Lasers 39 0405005 (in Chinese)
[17] Wang E L, Jiang H M, Xie K and Zhang X X 2014 Acta Phys. Sin. 63 134210 (in Chinese)
[18] Lee J H, Teh P C, Yusoff Z, Ibsen M, Belardi W, Monro T M and Richardson D J 2002 IEEE Photon. Techn. Lett. 14 876
[19] Kudlinski A, Cumberland B A, Travers J C, Bouwmans G, Quiquempois Y and Mussot A 2008 AIP Conf. Proc. 1055 15
[20] Zhang L 2016 Ultra-Broadly Tunable Light Sources Based on the Nonlinear Effects in Photonic Crystal Fibers (Berlin Heidelberg: Springer Theses) pp. 19-39
[21] Ademgil H and Haxha S 2009 Opt. Commun. 282 2831
[22] Zhang Y N, Ren L Y, Gong Y K, Li X H, Wang Zhang Y N, Ren L Y, Gong Y K, Li X H, Wang L R and Sun C D 2010 Appl. Opt. 49 3208
[23] Rashid M M, Anower M S, Hasan M I and Hasan M R 2017 International Conference on Electrical Engineering & Information Communication Techonology
[24] MalitsonI H 1965 J. Opt. Soc. Am. 55 1205
[25] Li L X, Yu C X, Yuan J H and Wei S 2013 Asia Communications & Photonics Conference AF2D.28
[26] Li D M, Zhou G Y, Xia C M, Wang C and Yuan J H 2014 Chin. Phys. B 23 044209
[27] Sheng Y, Lu J, Yao G F and Hu L 2014 Acta Photon. Sin. 43 0106008 (in Chinese)
[28] Yang T Y, Jiang H M, Wang E L and Xie K 2016 J. Infrared Millim. Waves 35 350 (in Chinese)
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[3] Generating Kerr nonlinearity with an engineered non-Markovian environment
Fei-Lei Xiong(熊飞雷), Wan-Li Yang(杨万里), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(4): 040302.
[4] Design of diamond-shape photonic crystal fiber polarization filter based on surface plasma resonance effect
Yongxia Zhang(张永霞), Jinhui Yuan(苑金辉), Yuwei Qu(屈玉玮), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), Xinzhu Sang(桑新柱), Keping Long(隆克平), Chongxiu Yu(余重秀). Chin. Phys. B, 2020, 29(3): 034208.
[5] Unconventional photon blockade in a three-mode system with double second-order nonlinear coupling
Hong-Yu Lin(林宏宇), Hui Yang(杨慧), and Zhi-Hai Yao(姚治海). Chin. Phys. B, 2020, 29(12): 120304.
[6] Refractive index sensor based on high-order surface plasmon resonance in gold nanofilm coated photonic crystal fiber
Zhen-Kai Fan(范振凯), Shao-Bo Fang(方少波), Shu-Guang Li(李曙光), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2019, 28(9): 094209.
[7] Dynamics of two levitated nanospheres nonlinearly coupling with non-Markovian environment
Xun Li(李逊), Biao Xiong(熊标), Shilei Chao(晁石磊), Jiasen Jin(金家森), Ling Zhou(周玲). Chin. Phys. B, 2019, 28(5): 050302.
[8] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[9] Design and optimization of microstructure optical fiber sensor based on bimetal plasmon mode interaction
Meng Wu(吴萌), Xin-Yu Liu(刘欣宇), Gui-Yao Zhou(周桂耀), Chang-Ming Xia(夏长明), Bo-Yao Li(李波瑶), Zhi-Yun Hou(侯峙云). Chin. Phys. B, 2019, 28(12): 124202.
[10] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[11] Numerical investigation on coherent mid-infrared supercontinuum generation in chalcogenide PCFs with near-zero flattened all-normal dispersion profiles
Jie Han(韩杰), Sheng-Dong Chang(常圣东), Yan-Jia Lyu(吕彦佳), Yong Liu(刘永). Chin. Phys. B, 2019, 28(10): 104204.
[12] Modeling and identification of magnetostrictive hysteresis with a modified rate-independent Prandtl-Ishlinskii model
Wei Wang(王伟), Jun-en Yao(姚骏恩). Chin. Phys. B, 2018, 27(9): 098503.
[13] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[14] Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(12): 126303.
[15] Surface plasmon polariton at the interface of dielectric and graphene medium using Kerr effect
Bakhtawar, Muhammad Haneef, B A Bacha, H Khan, M Atif. Chin. Phys. B, 2018, 27(11): 114215.
No Suggested Reading articles found!