Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 013401    DOI: 10.1088/1674-1056/27/1/013401

Plasma-screening effects on positronium formation

Jia Ma(马佳)1, Yuan-Cheng Wang(王远成)2, Ya-Jun Zhou(周雅君)3, Heng Wang(王珩)1
1 College of Science, Shenyang Aerospace University, Shenyang 110136, China;
2 College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China;
3 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China

Plasma-screening effects on positronium (Ps) formation for positron-hydrogen collisions in a Debye plasma environment is further investigated using the screening approximation model with the inclusion of the modified structure of Ps. More accurate Ps formation cross sections (n=1, 2) are obtained for various Debye lengths from the Ps formation thresholds to 50 eV. The influence of considering modified bound-state wave functions and eigenenergies for the Ps is found to result in the reduction of the Ps formation cross sections at low energies, whereas it cannot counteract the enhancement of the Ps formation by the Debye screening.

Keywords:  plasma-screening effect      positron      scattering      positronium formation  
Received:  17 August 2017      Revised:  23 September 2017      Published:  05 January 2018
PACS:  34.80.Uv (Positron scattering)  
  52.20.Hv (Atomic, molecular, ion, and heavy-particle collisions)  
  34.80.Lx (Recombination, attachment, and positronium formation)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11404223, 11447158, and 11604223) and the Doctoral Program Foundation of Shenyang Aerospace University, China (Grant No. 13YB26).

Corresponding Authors:  Jia Ma, Yuan-Cheng Wang     E-mail:;

Cite this article: 

Jia Ma(马佳), Yuan-Cheng Wang(王远成), Ya-Jun Zhou(周雅君), Heng Wang(王珩) Plasma-screening effects on positronium formation 2018 Chin. Phys. B 27 013401

[1] Salzman D 1998 Atomic Physics in Hot Plasmas (Oxford: Oxford University Press)
[2] Murillo M S and Weisheit J C 1998 Phys. Rep. 302 1
[3] Janev R K, Zhang S B and Wang J G 2016 Matter and Radiation at Extremes 1 237
[4] Weidenspointner G, Skinner G, Jean P, Knodlseder J, von Ballmoons P, Bignami G, Diehl R, Strong A W, Cordier B, Schanne S and Winkler C 2008 Nature 451 159
[5] Frey A R and Reid N B 2013 Phys. Rev. D 87 103508
[6] Bell A R and Kirk J G 2008 Phys. Rev. Lett. 101 200403
[7] Chupp E L, Forrest D J, Higbie P R, Suri A N, Tsai C and Dunphy P P 1973 Nature 241 333
[8] Amoretti G M, Amsler C, Bonomi G M, Bouchta A, Bowe P D, Carraro C, Cesar C L, Charlton M, Doser M, Filippini V, Fontana A, Fujiwara M C, Funakoshi R, Genova P, Hangst J S, Hayano R S, Jurgensen L V, Lagomarsino V, Landua R, Lindelof D, Lodi Rizzini E, Macri M, Madsen N, Manuzio G, Montagna P, Pruys H, Regenfus C, Rotondi A, Testera G, Variola A, and van der Werf D P 2003 Phys. Rev. Lett. 91 055001
[9] Sen S, Mandal P and Mukherjee 2011 Euro. Phys. J. D 62 379
[10] Sen S, Mandal P and Mukherjee 2012 Euro. Phys. J. D 66 230
[11] Ghoshal A, Kamali M Z M and Ratnavelu 2013 Phys. Plasmas 20 013506
[12] Rej P and Ghoshal A 2014 Phys. Plasmas 21 093507
[13] Nayek S and Ghoshal A 2012 Phys. Plasmas 19 113501
[14] Nayek S and Ghoshal A 2012 Phys. Scr. 85 035301
[15] Nayek S and Ghoshal A 2011 Euro. Phys. J. D 64 257
[16] Zhang S B, Qi Y Y, Qu Y Z, Chen X J and Wang J G 2010 Chin. Phys. Lett. 27 013401
[17] Ghoshal A, Nayek S, Kamali M Z M and Ratnavelu K 2014 AIP Conf. Proc. 1588 94
[18] Ma J, Cheng Y, Wang Y C and Zhou Y 2012 Phys. Plasmas 19 063303
[19] Rej P and Ghoshal A 2016 J. Phys. B-At. Mol. Opt. Phys. 49 125203
[20] Pandey M K, Lin Y C and Ho Y K 2016 J. Phys. B-At. Mol. Opt. Phys. 49 034007
[21] Ma J, Cheng Y, Wang Y C and Zhou Y 2011 J. Phys. B-At. Mol. Opt. Phys. 44 175203
[22] Utamuratov R, Kadyrov A S, Fursa D V, Bray I and Stelbovics A T 2010 Phys. Rev. A 82 042705
[23] Liu F, Cheng Y J and Zhou Y J 2012 Chin. Phys. B 21 053403
[24] Yu R M, Cheng Y J, Wang Y and Zhou Y J 2012 Chin. Phys. B 21 053402
[25] Ma J, Zhou Y J and Wang Y C 2012 Chin. Phys. B 21 123403
[26] Cheng Y J, Zhou Y J and Jiao L G 2012 Chin. Phys. B 21 013405
[27] Cheng Y J and Zhou Y J 2010 Chin. Phys. B 19 063405
[28] Lin L, Wang H N and Jiao L G 2017 Chin. Phys. B 26 033401
[29] Wu X G, Cheng Y J, Liu F and Zhou Y J 2017 Chin. Phys. B 26 023401
[30] Yu R M, Pu C Y, Huang X Y, Ying F R, Liu X Y, Jiao L G and Zhou Y J 2016 Chin. Phys. B 25 073401
[31] Zhou Y, Ratnavelu K and McCarthy I E 2005 Phys. Rev. A 71 042703
[32] Salvat F, Fernandez-Varea J M and Williamson W 1995 Comput. Phys. Commun. 90 151
[33] Kar S and Ho Y K 2006 Chem. Phys. Lett. 424 403
[34] Kar S and Ho Y K 2006 Phys. Rev. A 73 032502
[35] Kar S and Ho Y K 2009 Few-Body Syst. 46 173
[36] McCarthy I E and Zhou Y 1994 Phys. Rev. A 49 4597
[37] McCarthy I E and Stelbovics A T 1980 Phys. Rev. A 22 502
[1] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[2] Some experimental schemes to identify quantum spin liquids
Yonghao Gao(高永豪), Gang Chen(陈钢). Chin. Phys. B, 2020, 29(9): 097501.
[3] Exact scattering states in one-dimensional Hermitian and non-Hermitian potentials
Ruo-Lin Chai(柴若霖), Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(9): 090301.
[4] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[5] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[6] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[7] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[8] Lattice deformation in epitaxial Fe3O4 films on MgO substrates studied by polarized Raman spectroscopy
Yang Yang(杨洋), Qiang Zhang(张强), Wenbo Mi(米文博), Xixiang Zhang(张西祥). Chin. Phys. B, 2020, 29(8): 083302.
[9] Scattering and absorption characteristics of non-spherical cirrus cloud ice crystal particles in terahertz frequency band
Tao Xie(谢涛), Meng-Ting Chen(陈梦婷), Jian Chen(陈健), Feng Lu(陆风), Da-Wei An(安大伟). Chin. Phys. B, 2020, 29(7): 074102.
[10] Single-photon scattering controlled by an imperfect cavity
Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(7): 070301.
[11] Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2
Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国). Chin. Phys. B, 2020, 29(6): 067502.
[12] Raman scattering study of two-dimensional magnetic van der Waals compound VI3
Yi-Meng Wang(王艺朦), Shang-Jie Tian(田尚杰), Cheng-He Li(李承贺), Feng Jin(金峰), Jian-Ting Ji(籍建葶), He-Chang Lei(雷和畅), Qing-Ming Zhang(张清明). Chin. Phys. B, 2020, 29(5): 056301.
[13] Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model
Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(5): 054302.
[14] Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦). Chin. Phys. B, 2020, 29(3): 038505.
[15] A hybrid method of solving near-zone composite eletromagnetic scattering from targets and underlying rough surface
Xi-Min Li(李西敏), Jing-Jing Li(李晶晶), Qian Gao(高乾), Peng-Cheng Gao(高鹏程). Chin. Phys. B, 2020, 29(2): 024202.
No Suggested Reading articles found!