Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010701    DOI: 10.1088/1674-1056/27/1/010701
GENERAL Prev   Next  

Leader-following consensus of discrete-time fractional-order multi-agent systems

Erfan Shahamatkhah, Mohammad Tabatabaei
Department of Electrical Engineering, Khomeinishahr Branch, Islamic Azad University, Isfahan, Iran
Abstract  Leader-following consensus of fractional order multi-agent systems is investigated. The agents are considered as discrete-time fractional order integrators or fractional order double-integrators. Moreover, the interaction between the agents is described with an undirected communication graph with a fixed topology. It is shown that the leader-following consensus problem for the considered agents could be converted to the asymptotic stability analysis of a discrete-time fractional order system. Based on this idea, sufficient conditions to reach the leader-following consensus in terms of the controller parameters are extracted. This leads to an appropriate region in the controller parameters space. Numerical simulations are provided to show the performance of the proposed leader-following consensus approach.
Keywords:  multi-agent systems      fractional order systems      leader-following consensus      discrete-time fractional order systems     
Received:  02 August 2017      Published:  05 January 2018
PACS:  07.05.Dz (Control systems)  
Corresponding Authors:  Mohammad Tabatabaei     E-mail:  tabatabaei@iaukhsh.ac.ir

Cite this article: 

Erfan Shahamatkhah, Mohammad Tabatabaei Leader-following consensus of discrete-time fractional-order multi-agent systems 2018 Chin. Phys. B 27 010701

[1] Cassandras C G and Li W 2005 Eur. J. Control 11 436
[2] Qu Z, Wang J and Hull R A 2008 IEEE T. Automat. Contr. 53 894
[3] Ghommam J, Mahmoud M S and Saad M 2013 J. Frankl. Inst. 350 2291
[4] Lewis F L, Zhang H, Hengster-Movric K and Das A 2014 Cooperative Control of Multi-agent Systems: Optimal and Adaptive Design Approaches (London: Springer-Verlag) pp.1-71
[5] Ni W and Cheng D 2010 Syst. Control Lett. 59 209
[6] Zhi H, Jia L, Ling C and Bing W 2012 Proceedings of the 31th Chinese Control Conference, July 25-27, 2012, Hefei, China, p. 209
[7] Olfati-Saber R 2006 IEEE T. Automat. Contr. 51 401
[8] Hu J and Cao J 2015 IEEE T. Neur. Net. Lear. 26 2453
[9] Hu M, Cao J, Hu A, Yang Y and Jin Y 2015 Circ. Syst. Signal Pr. 34 41
[10] Wan Y, Wen G, Cao J and Yu W 2016 Int. J. Robust Nonlin. 26 110
[11] Wan Y, Cao J, Alsaedi A and Hayat T 2017 Asian J. Control 19 918
[12] Cao Y, Zhang L, Li C and Chen M Z Q 2017 IEEE T. Cybernetics 47 2212
[13] Liu X, Cao J, Jiang N, Hao G and Wang S 2016 J. Frankl. Inst. 353 1479
[14] Yang H Y, Zhu X L and Zhang S Y 2010 Eur. J. Control 16 188
[15] Zhu W and Cheng D 2010 Automatica 46 1994
[16] Djaidja S and Wu Q 2016 Int. J. Control Autom. 14 357
[17] Xie D and Wang S 2012 J. Math. Anal. Appl. 387 8
[18] Li H, Liao X and Chen G 2013 Int. J. Control Autom. 11 422
[19] Zhang Y and Yang Y 2013 Phys. Lett. A 377 243
[20] Jesus T A, Pimenta L C A, Torres L A B and Mendes E M A M 2014 Int. J. Control Autom. 12 930
[21] Hu H, Yu L, Chen G and Xie G 2013 Int. J. Control Autom. 11 258
[22] Yu S and Long X 2015 Automatica 54 158
[23] He X and Wang Q 2017 Appl. Math. Comput. 295 65
[24] Monje C A, Chen Y Q, Vinagre B M, Xue D and Feliu-Batlle V 2010 Fractional-order Systems and Controls: Fundamentals and Applications (London: Springer-Verlag)
[25] Huang C, Cao J, Xiao M, Alsaedi A and Hayat T 2017 Appl. Math. Comput. 292 210
[26] Shen J and Cao J 2012 Asian J. Control 14 1690
[27] Shen J, Cao J and Lu J 2012 P. I. Mech. Eng. I-J Sys. 226 271
[28] Yin X and Hu S 2013 Asian J. Control 15 1538
[29] Yu Z, Jiang H and Hu C 2015 Neurocomputing 149 613
[30] Yang H Y, Zhu X L and Cao K C 2014 Fract. Calc. Appl. Anal. 17 23
[31] Chen J, Guan Z H, Li T, Zhang D X, Ge M F and Zheng D F 2015 Neurocomputing 168 698
[32] Song C, Cao J and Liu Y 2015 Neurocomputing 165 293
[33] Yu Z, Jiang H, Hu C and Yu J 2015 Int. J. Control 88 1746
[34] Ren G and Yu Y 2016 Neurocomputing 218 339
[35] Bai J, Wen G, Rahmani A and Yu Y 2017 Asian J. Control 19 1009
[36] Zhu W, Li W, Zhou P and Yang C 2017 Neurocomputing 230 60
[37] Yang C, Li W and Zhu W 2017 Discrete Dyn. Nat. Soc. 2017 9256532
[38] Zhu W, Chen B and Yang J 2017 Fract. Calc. Appl. Anal. 20 52
[39] Ma X, Sun F, Li H and He B 2017 Int. J. Syst. Sci. 48 629
[40] Liu X, Zhang Z and Liu H 2017 Asian J. Control doi: 10.1002/asjc.1493
[41] Stanisłwski R and Latawiec K J 2013 B Pol. Acad. Sci-Tech. 61 353
[42] Stanisłwski R and Latawiec K J 2013 B Pol. Acad. Sci-Tech. 61 363
[1] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[2] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[3] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[4] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[5] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[6] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[7] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[8] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[9] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[10] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[11] Distributed H control of multi-agent systems with directed networks
Liu Wei, Liu Ai-Li, Zhou Shao-Lei. Chin. Phys. B, 2015, 24(9): 090208.
[12] Containment consensus with measurement noises and time-varying communication delays
Zhou Feng, Wang Zheng-Jie, Fan Ning-Jun. Chin. Phys. B, 2015, 24(2): 020203.
[13] A novel model and behavior analysis for a swarm of multi-agent systems with finite velocity
Wang Liang-Shun, Wu Zhi-Hai. Chin. Phys. B, 2014, 23(9): 098901.
[14] Tracking problem under a time-varying topology
Dong Li-Jing, Chai Sen-Chun, Zhang Bai-Hai, Nguang Sing-Kiong. Chin. Phys. B, 2014, 23(6): 060502.
[15] State-dependent event-triggered control of multi-agent systems
Qi Bin, Cui Bao-Tong, Lou Xu-Yang. Chin. Phys. B, 2014, 23(11): 110501.
No Suggested Reading articles found!