Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010502    DOI: 10.1088/1674-1056/27/1/010502
GENERAL Prev   Next  

Detection of meso-micro scale surface features based on microcanonical multifractal formalism

Yuanyuan Yang(杨媛媛)1, Wei Chen(陈伟)2, Tao Xie(谢涛)3, William Perrie4
1 School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China;
2 School of Automation, Wuhan University of Technology, Wuhan 430070, China;
3 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China;
4 Fisheries & Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, B2Y 4A2 Canada
Abstract  Synthetic aperture radar (SAR) is an effective tool to analyze the features of the ocean. In this paper, the microcanonical multifractal formalism is used to analyze SAR images to obtain meso-micro scale surface features. We use the Sobel operator to calculate the gradient of each point in the image, then operate continuous variable scale wavelet transform on this gradient matrix. The relationship between the wavelet coefficient and scale is built by linear regression. This relationship decides the singular exponents of every point in the image which contain local and global features. The manifolds in the ocean can be revealed by analyzing these exponents. The most singular manifold, which is related to the streamlines in the SAR images, can be obtained with a suitable threshold of the singular exponents. Experiments verify that application of the microcanonical multifractal formalism to SAR image analysis is effective for detecting the meso-micro scale surface information.
Keywords:  multifractal      microcanonical      singularity      analysis  
Received:  31 July 2017      Revised:  12 September 2017      Accepted manuscript online: 
PACS:  05.45.Df (Fractals)  
  41.20.-q (Applied classical electromagnetism)  
Fund: Project supported by the National Key R&D Program of China (Grant No.2016YFC1401007),the Global Change Research Program of China (Grant No.2015CB953901),the National Natural Science Foundation of China (Grant No.41776181),the Canadian Program on Energy Research and Development (OERD),Canadian Space Agency's SWOT Program,and the Canadian Marine Environmental Observation Prediction and Response Network (MEOPAR).
Corresponding Authors:  Yuanyuan Yang     E-mail:  yangyuanyuan@whut.edu.cn

Cite this article: 

Yuanyuan Yang(杨媛媛), Wei Chen(陈伟), Tao Xie(谢涛), William Perrie Detection of meso-micro scale surface features based on microcanonical multifractal formalism 2018 Chin. Phys. B 27 010502

[1] Lettau M 1997 Journal of Economic Dynamics and Control 21 1117
[2] Kinsner W and Dansereau R 2006 IEEE 5th International Conference on Cognitive Informatics, July 17-19, 2006, Beijin, China, p. 200
[3] Bi S and Gao J B 2016 Chin. Phys. B 25 070502
[4] Bi F and Li C F 2013 Chin. Phys. Lett. 30 010306
[5] Ni H J, Zhou L P, Zeng P, Huang X L, Liu H X, Ning X B and the Alzheimer's Disease Neuroimaging Initiative 2015 Chin. Phys. B 24 070502
[6] Isern-Fontanet J, Turiel A, García-Ladona E and Font J 2007 Journal of Geophysical Research 112 05024
[7] Abraham E and Bowen M 2002 Chaos 12 373
[8] Liang S Y, Wang Q M and Zhong X M 2009 The 2nd International Conference on Power Electronics and Intelligent Transportation System, December 19-20, 2009, Shenzhen, China, p. 27
[9] He C, Yang S X and Huang X 2004 Image and Signal Processing 151 207
[10] Lu J, Zou Y R and Ye Z X 2008 International Colloquium on ComPuting, Communication, Control, and Management, August 3-4, 2008, Guangzhou, China, p. 115
[11] Xi Y F, Liu T Y and Wu X Y 2009 The 2nd International Congress on Image and Signal Proeessing, October 17-18, 2009, Tianjin, China, p. 1
[12] Cao W L, Shi Z K and Feng J H 2006 IEEE 5th International Conference on Cognitive Informatics, July 17-19, 2006, Beijin, China, p. 903
[13] Soemintapura K and Langi A 1998 IEEE Asia-Pacific Conference on Circuits and Systems, November 24-27, 1998, Chiangmai, Thailand, p. 65
[14] Gao J B and Yao K 2002 IEEE Radar Conference, April 22-25, 2002, Long Beach, California, p. 500
[15] Arneodo A, Aubenton-Carafa Y and Bacry E 1996 Physical D 96 291
[16] Arneodo1A, Baudet C and Belin F 1996 Europhys. Lett. 34 411
[17] Turiel A, Parga N and Daniel L 2000 Neural Computation 12 763
[18] Zhang A H, Li X W, Su G F and Zhang Y 2015 Chin. Phys. Lett. 32 090501
[19] Turiel A, Grazzini J and Yahia H 2005 IEEE Geoscience and Remote Sensing Letters 2 447
[20] Yu Y M, Yang L C, Zhou Q, Zhao L L and Liu Z P 2016 Chin. Phys. B 25 060503
[21] Zhang M N, Li Z H, Chen X Y, Liu C X, Teng S Y and Cheng C F 2013 Chin. Phys. Lett. 30 044210
[22] Lin Y L, Yan Z G, Yang J, Wang C Y and Bian B M 2012 Acta Phys. Sin. 61 100505 (in Chinese)
[23] Yang J, Bian B M, Yan Z G, Wang C Y and Li Z H 2011 Acta Phys. Sin. 60 100506 (in Chinese)
[24] Xiao B Q, Fan J T, Jiang G P and Chen L X 2012 Acta Phys. Sin. 61 154401 (in Chinese)
[25] Xing H Y, Gong P and Xu W 2012 Acta Phys. Sin. 61 160504 (in Chinese)
[26] Umbert M, Hoareau N, Turiel A and Ballabrera-Poy J 2014 Remote Sensing of Environment 146 172
[27] Arrault J, Arneodo A, Davis A and Marshak A 1997 Phys. Rev. Lett. 79 75
[28] Xie T, He C, Perrie W, Kuang H L, Zou G H and Chen W 2010 Chin. Phys. B 19 024101
[29] Xie T, Shen T, Perrie W, Wei C and Kuang H L 2010 Chin. Phys. B 19 054102
[30] Xie T, Perrie W, Fang H, Zhao L, Yu W J and He Y J 2017 Chin. Phys. B 26 054102
[31] Xie T, Zou G H, Perrie W, Kuang H L and Wei C 2010 Chin. Phys. B 19 059201
[32] Xie T, Perrie W, Zhao S Z, Fang H, Yu W J and He Y J 2016 Chin. Phys. B 25 064101
[33] Xie T, Fang H, Perrie W, Zhao S Z, Yu W J and He Y J 2016 Chin. Phys. B 25 074102
[34] Turiel A and Pozo A 2002 IEEE Transactions on Image Processing 11 345
[35] Carrasco H, Sudre J and Garcon V 2015 Biogeosciences Discuss 12 1405
[1] Characteristic mode analysis of wideband high-gain and low-profile metasurface antenna
Kun Gao(高坤), Xiang-Yu Cao(曹祥玉), Jun Gao(高军), Huan-Huan Yang(杨欢欢), and Jiang-Feng Han(韩江枫). Chin. Phys. B, 2021, 30(6): 064101.
[2] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[3] Suppression of ice nucleation in supercooled water under temperature gradients
Li-Ping Wang(王利平), Wei-Liang Kong(孔维梁), Pei-Xiang Bian(边佩翔), Fu-Xin Wang(王福新), and Hong Liu(刘洪). Chin. Phys. B, 2021, 30(6): 068203.
[4] Magnetic shielding property for cylinder with circular, square, and equilateral triangle holes
Si-Yuan Hao(郝思源), Xiao-Ping Lou(娄小平), Jing Zhu(祝静), Guang-Wei Chen(陈广伟), and Hui-Yu Li(李慧宇). Chin. Phys. B, 2021, 30(6): 060702.
[5] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
[6] Experimental analysis of interface contact behavior using a novel image processing method
Jingyu Han(韩靖宇), Zhijun Luo(罗治军), Yuling Zhang(张玉玲), and Shaoze Yan(阎绍泽). Chin. Phys. B, 2021, 30(5): 054601.
[7] Constructing refined null models for statistical analysis of signed networks
Ai-Wen Li(李艾纹), Jing Xiao(肖婧, and Xiao-Ke Xu(许小可). Chin. Phys. B, 2021, 30(3): 038901.
[8] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[9] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[10] Retrieval of multiple scattering contrast from x-ray analyzer-based imaging
Heng Chen(陈恒), Bo Liu(刘波), Li-Ming Zhao(赵立明), Kun Ren(任坤), and Zhi-Li Wang(王志立). Chin. Phys. B, 2021, 30(1): 018701.
[11] Network analysis and spatial agglomeration of China's high-speed rail: A dual network approach
Wei Wang(王微), Wen-Bo Du(杜文博), Wei-Han Li(李威翰), Lu (Carol) Tong(佟路), and Jiao-E Wang(王姣娥). Chin. Phys. B, 2021, 30(1): 018901.
[12] Determination of potassium sorbate and sorbic acid in agricultural products using THz time-domain spectroscopy
Yuying Jiang(蒋玉英), Guangming Li(李广明), Ming Lv(吕明), Hongyi Ge(葛宏义), Yuan Zhang(张元). Chin. Phys. B, 2020, 29(9): 098705.
[13] Effects of temperature and pressure on OH laser-induced fluorescence exciting A-X (1,0) transition at high pressures
Xiaobo Tu(涂晓波), Linsen Wang(王林森), Xinhua Qi(齐新华), Bo Yan(闫博), Jinhe Mu(母金河), Shuang Chen(陈爽). Chin. Phys. B, 2020, 29(9): 093301.
[14] Improving RNA secondary structure prediction using direct coupling analysis
Xiaoling He(何小玲), Jun Wang(王军), Jian Wang(王剑), Yi Xiao(肖奕). Chin. Phys. B, 2020, 29(7): 078702.
[15] Discharge and flow characterizations of the double-side sliding discharge plasma actuator
Qi-Kun He(贺启坤), Hua Liang(梁华), Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2020, 29(6): 064702.
No Suggested Reading articles found!