Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010202    DOI: 10.1088/1674-1056/27/1/010202
GENERAL Prev   Next  

Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control

Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东)
Department of Mathematics, Beijing Jiaotong University, Beijing 100044, China
Abstract  The finite-time control of uncertain fractional-order Hopfield neural networks is investigated in this paper. A switched terminal sliding surface is proposed for a class of uncertain fractional-order Hopfield neural networks. Then a robust control law is designed to ensure the occurrence of the sliding motion for stabilization of the fractional-order Hopfield neural networks. Besides, for the unknown parameters of the fractional-order Hopfield neural networks, some estimations are made. Based on the fractional-order Lyapunov theory, the finite-time stability of the sliding surface to origin is proved well. Finally, a typical example of three-dimensional uncertain fractional-order Hopfield neural networks is employed to demonstrate the validity of the proposed method.
Keywords:  fractional-order neural networks      finite-time      sliding mode control      parameters estimation  
Received:  05 May 2017      Revised:  25 September 2017      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11371049 and 61772063) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2016JBM070).
Corresponding Authors:  Yongguang Yu     E-mail:  ygyu@bjtu.edu.cn

Cite this article: 

Yangui Xi(喜彦贵), Yongguang Yu(于永光), Shuo Zhang(张硕), Xudong Hai(海旭东) Finite-time robust control of uncertain fractional-order Hopfield neural networks via sliding mode control 2018 Chin. Phys. B 27 010202

[1] Hopfield J J 1982 Proc. Natl. Acad. Sci. USA 79 2554
[2] Sun C 2002 Neural Networks 15 1299
[3] Wang Z, Liu Y, Fraser K, et al. 2006 Phys. Lett. A 354 288
[4] Huang H, Du Q and Kang X 2013 Isa T. 52 759
[5] Wang H, Yu Y and Wen G 2014 Neural Networks 55 98
[6] Mihailo L 2011 Scientific Technical Review 61 1
[7] Chen L, Chai Y, Wu R, et al. 2013 Neurocomputing 111 190
[8] Liu H, Li S, Wang H, et al. 2015 Entropy 17 7185
[9] Anastassiou G A 2012 Comput. Math. Appl. 64 1655
[10] Kaslik E and Sivasundaram S 2012 Neural Networks 32 245
[11] Boroomand A and Menhaj M B 2009 Fractional-Order Hopfield Neural Networks. In: Köppen M, Kasabov N, Coghill G (eds) Advances in Neuro-Information Processing. ICONIP 2008. Lecture Notes in Computer Science, vol. 5506. Springer, Berlin, Heidelberg
[12] Wen G, Hu G, Yu W, et al. 2013 Syst. Control Lett. 62 1151
[13] Wen G, Hu G, Yu W, et al. 2014 IEEE T. Circuits-Ⅱ 61 359
[14] Chen L, Chai Y, Wu R, et al. 2012 IEEE T. Circuits-Ⅱ 59 602
[15] Ahn H S and Chen Y 2008 Automatica 44 2985
[16] Farges C, Moze M and Sabatier J 2009 Control Conference IEEE 3395
[17] Utkin V I 1994 Sliding mode control in discrete-time and difference systems. In: Zinober A S I (eds) Variable Structure and Lyapunov Control. Lecture Notes in Control and Information Sciences, vol. 193. Springer, Berlin, Heidelberg
[18] Slotine J J E and Li W 1987 IEEE Xplore 1987 595
[19] Konishi K, Hirai M and Kokame H 1998 Phys. Lett. A 245 511
[20] Boubaker O and Dhifaoui R 2014 Robust Chaos Synchronization for Chua's Circuits via Active Sliding Mode Control. In: Banerjee S, Erçetin Ş (eds) Chaos, Complexity and Leadership 2012 Springer Proceedings in Complexity (Dordrecht: Springer)
[21] Razminia A and Baleanu D 2013 Mechatronics 23 873
[22] Yin C, Zhong S and Chen W 2012 Commun. Nonlinear Sci. 17 356
[23] Aghababa M P 2012 Commun. Nonlinear Sci. 17 2670
[24] Senejohnny D M and Delavari H 2012 Commun. Nonlinear Sci. 17 4373
[25] Podlubny I 1999 Mathematics in Science and Engineering 198
[26] Ju K K, Guo C X and Pan X Y 2017 Chin. Phys. Lett. 34 10301
[27] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 10202
[28] Chen J C, Ma Z Y and Hu Y H 2017 Chin. Phys. Lett. 34 10201
[29] Yu H L, Wu H Y, Zhu H J, Song G F and Xu Yun 2016 Chin. Phys. Lett. 33 128103
[30] Liu B N, Huang Q B, Zhang W M, Ren K J, Cao X Q and Zhao J 2017 Acta Phys. Sin. 66 020505 (in Chinese)
[31] He Q H 2017 Acta Phys. Sin. 66 022501 (in Chinese)
[32] Lu Z Y, Ren Y Q, Ba B, Wang D M and Zhang J 2017 Acta Phys. Sin. 66 020503 (in Chinese)
[33] Xu B R and Wang G Y 2017 Acta Phys. Sin. 66 020502 (in Chinese)
[34] Li R, Zuo X W and Wang E G 2017 Acta Phys. Sin. 66 027401 (in Chinese)
[35] Podlubny I 1999 Mathematics in Science and Engineering
[36] Aghababa M P 2013 Int. J. Control 86 1744
[37] Efe M Ö 2008 IEEE T. Syst. Man Cy. B 38 1561
[38] Li Y, Chen Y and Podlubny I 2010 Comput. Math. Appl. 59 1810
[39] Li Y, Chen Y and Podlubny I 2009 Automatica 45 1965
[1] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[2] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[3] Fixed time integral sliding mode controller and its application to the suppression of chaotic oscillation in power system
Jiang-Bin Wang(王江彬), Chong-Xin Liu(刘崇新), Yan Wang(王琰), Guang-Chao Zheng(郑广超). Chin. Phys. B, 2018, 27(7): 070503.
[4] A new four-dimensional chaotic system with first Lyapunov exponent of about 22, hyperbolic curve and circular paraboloid types of equilibria and its switching synchronization by an adaptive global integral sliding mode control
Jay Prakash Singh, Binoy Krishna Roy, Zhouchao Wei(魏周超). Chin. Phys. B, 2018, 27(4): 040503.
[5] Coherent structures over riblets in turbulent boundary layer studied by combining time-resolved particle image velocimetry (TRPIV), proper orthogonal decomposition (POD), and finite-time Lyapunov exponent (FTLE)
Shan Li(李山), Nan Jiang(姜楠), Shaoqiong Yang(杨绍琼), Yongxiang Huang(黄永祥), Yanhua Wu(吴彦华). Chin. Phys. B, 2018, 27(10): 104701.
[6] Dynamic analysis and fractional-order adaptive sliding mode control for a novel fractional-order ferroresonance system
Ningning Yang(杨宁宁), Yuchao Han(韩宇超), Chaojun Wu(吴朝俊), Rong Jia(贾嵘), Chongxin Liu(刘崇新). Chin. Phys. B, 2017, 26(8): 080503.
[7] Robust pre-specified time synchronization of chaotic systems by employing time-varying switching surfaces in the sliding mode control scheme
Alireza Khanzadeh, Mahdi Pourgholi. Chin. Phys. B, 2016, 25(8): 080501.
[8] Controlling chaos based on a novel intelligent integral terminal sliding mode control in a rod-type plasma torch
Safa Khari, Zahra Rahmani, Behrooz Rezaie. Chin. Phys. B, 2016, 25(5): 050201.
[9] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke, Wang Zhi-Hui, Gao Li-Ke, Sun Yue, Ma Tie-Dong. Chin. Phys. B, 2015, 24(3): 030504.
[10] Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer
Chen Qiang, Nan Yu-Rong, Zheng Heng-Huo, Ren Xue-Mei. Chin. Phys. B, 2015, 24(11): 110504.
[11] Reactionless robust finite-time control for manipulation of passive objects by free-floating space robots
Guo Sheng-Peng, Li Dong-Xu, Meng Yun-He, Fan Cai-Zhi. Chin. Phys. B, 2014, 23(5): 054502.
[12] Finite-time sliding mode synchronization of chaotic systems
Ni Jun-Kang, Liu Chong-Xin, Liu Kai, Liu Ling. Chin. Phys. B, 2014, 23(10): 100504.
[13] Generalized projective synchronization of the fractional-order chaotic system using adaptive fuzzy sliding mode control
Wang Li-Ming, Tang Yong-Guang, Chai Yong-Quan, Wu Feng. Chin. Phys. B, 2014, 23(10): 100501.
[14] Robust finite-time stabilization of unified chaotic complex systems with certain and uncertain parameters
Liu Ping. Chin. Phys. B, 2013, 22(7): 070501.
[15] Synchronization of uncertain fractional-order chaotic systems with disturbance based on fractional terminal sliding mode controller
Wang Dong-Feng, Zhang Jin-Ying, Wang Xiao-Yan. Chin. Phys. B, 2013, 22(4): 040507.
No Suggested Reading articles found!