Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(1): 010201    DOI: 10.1088/1674-1056/27/1/010201
GENERAL   Next  

Improved reproducing kernel particle method for piezoelectric materials

Ji-Chao Ma(马吉超)1, Gao-Feng Wei(魏高峰)1, Dan-Dan Liu(刘丹丹)2
1 School of Mechanical and Automotive Engineering, Qilu University of Technology, Jinan 250353, China;
2 College of Foreign Languages, Shandong Normal University, Jinan 250014, China
Abstract  In this paper, the normal derivative of the radial basis function (RBF) is introduced into the reproducing kernel particle method (RKPM), and the improved reproducing kernel particle method (IRKPM) is proposed. The method can decrease the errors on the boundary and improve the accuracy and stability of the algorithm. The proposed method is applied to the numerical simulation of piezoelectric materials and the corresponding governing equations are derived. The numerical results show that the IRKPM is more stable and accurate than the RKPM.
Keywords:  meshless methods      piezoelectric materials      reproducing kernel particle method      radial basis function method  
Received:  02 August 2017      Revised:  15 September 2017      Published:  05 January 2018
PACS:  02.30.Jr (Partial differential equations)  
  02.60.-x (Numerical approximation and analysis)  
  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11271234) and the Shandong Provincial Science Foundation, China (Grant No. ZR2017MA028).
Corresponding Authors:  Gao-Feng Wei     E-mail:  wgf@spu.edu.cn

Cite this article: 

Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹) Improved reproducing kernel particle method for piezoelectric materials 2018 Chin. Phys. B 27 010201

[1] Zhang W, Chen L Z, Zhang J M and Huang Z G 2017 Chin. Phys. B 26 048801
[2] Zhao X and Liew K M 2010 Comput. Mech. 45 297
[3] Sun Y Z and Liew K M 2007 Lecture Notes in Engineering and Computer Science 2166 1193
[4] Ohs R R and Aluru N R 2001 Comput. Mech. 27 23
[5] Chen L, Ma H P and Cheng Y M 2013 Chin. Phys. B 22 050202
[6] Cheng R J and Liew K M 2009 Comput. Mech. 45 1
[7] Wang D D and Chen P J 2014 Comput. Mech. 54 689
[8] Chen L, Cheng Y M and Ma H P 2015 Comput. Mech. 55 591
[9] Zhang R P, Zhu J, Li X G, Loula A F D and Yu X J 2016 Appl. Math. Model. 40 5096
[10] Varsamis D N and Karampetakis N P 2014 Multidim. Syst. Sign. P 25 179
[11] Strozecki Y 2013 Theory Comput. Syst. 53 532
[12] Mantegh I, Jenkin M R M and Goldenberg A A 2010 J. Intell. Robot. Syst. 59 191
[13] Xie G Z, Zhang J M, Huang C, Lu C J and Li G Y 2014 Comput. Mech. 53 575
[14] Wang J F, Sun F X and Cheng Y M 2012 Chin. Phys. B 21 090204
[15] Tang Y Z and Li X L 2017 Chin. Phys. B 26 030203
[16] Cheng Y M, Bai F N, Liu C and Peng M J 2016 Int. J. Comput. Mater. Sci. Eng. 5 1650023
[17] Cheng Y M, Liu C, Bai F N and Peng M J 2015 Chin. Phys. B 24 100202
[18] Li X L and Zhang S G 2016 Appl. Math. Model. 40 2875
[19] Song C Y, Choi H Y and Lee J S 2014 Struct. Multidisc. Optim. 49 851
[20] Sun F X, Wang J F, Cheng Y M and Huang A X 2015 Appl. Numer. Math. 98 79
[21] Liu M B and Liu G R 2010 Comput. Meth. Eng. 17 25
[22] Han Y W, Qiang H F, Liu H and Gao W R 2014 Acta Mech. Sin. 30 7
[23] Congreve S and Wihler T P 2017 J. Comput. Appl. Math. 311 457
[24] Liu Y, Liew K M, Hon Y C and Zhang X 2005 Smart Mater. Struct. 14 1163
[25] Hon Y C, Ling L and Liew K M 2005 Comput. Mater. Con. 2 39
[26] Shi J P, Ma W T and Li N 2013 Meccanica 48 2263
[27] Christensen O and Massopust P 2012 Adv. Comput. Math. 37 301
[28] Mirzaei D and Schaback R 2014 Numer. Algor. 65 275
[29] Sheu G Y 2013 Geotech. Geol. Eng. 31 1453
[30] Dai B D and Zheng B J 2013 Appl. Math. Comput. 219 10044
[31] Dai B D, Cheng J and Zheng B J 2013 Int. J. Appl. Mech. 5 1350011
[32] Tatari M, Kamranian M and Dehghan M 2011 Comput. Mech. 48 689
[33] Huang Z Y and Yang X 2011 J. Sci. Comput. 49 351
[34] Cui X Y, Liu G R and Li G Y 2011 Arch. Appl. Mech. 81 1
[35] Ma J C, Wei G F, Liu D D and Liu G T 2017 Appl. Math. Comput. 309 170
[36] Liu Y, Hon Y C and Liew K M 2006 Int. J. Numer. Meth. Eng. 66 1153
[37] Gao H F and Wei G F 2014 Math. Probl. Eng. 353472
[38] Gao H F and Wei G F 2016 Math. Probl. Eng. 2016 5803457
[39] Deng Y J, Liu C, Peng M J and Cheng Y M 2015 Int. J. Appl. Mech. 7 1550017
[40] Cheng H, Peng M J and Cheng Y M 2017 Eng. Anal. Bound. Elem. 84 52
[41] Liu W K, Jun S and Zhang Y F 1995 Int. J. Numer. Meth. Fl. 20 1081
[42] Hu J Y, Sun Y and Li Q H 2016 Chin. Phys. B 25 127701
[43] Wang J, Chen S S and Li Q H 2016 Chin. Phys. B 25 040203
[1] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[2] Investigations of thickness-shear mode elastic constant and damping of shunted piezoelectric materials with a coupling resonator
Ji-Ying Hu(胡吉英), Zhao-Hui Li(李朝晖), Yang Sun(孙阳), Qi-Hu Li(李启虎). Chin. Phys. B, 2016, 25(12): 127701.
[3] An interpolating reproducing kernel particle method for two-dimensional scatter points
Qin Yi-Xiao, Liu Ying-Ying, Li Zhong-Hua, Yang Ming. Chin. Phys. B, 2014, 23(7): 070207.
[4] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie, Cheng Yu-Min. Chin. Phys. B, 2013, 22(9): 090204.
[5] Combine complex variable reproducing kernel particle method and finite element method for solving transient heat conduction problems
Chen Li, Ma He-Ping, Cheng Yu-Min. Chin. Phys. B, 2013, 22(5): 050202.
[6] Meshless analysis of three-dimensional steady-state heat conduction problems
Cheng Rong-Jun, Ge Hong-Xia. Chin. Phys. B, 2010, 19(9): 090201.
[7] The complex variable reproducing kernel particle method for two-dimensional elastodynamics
Chen Li, Cheng Yu-Min. Chin. Phys. B, 2010, 19(9): 090204.
No Suggested Reading articles found!