Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 098103    DOI: 10.1088/1674-1056/26/9/098103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide

Cai-Xia Hou(侯彩霞)1,2, Xin-He Zheng(郑新和)1, Rui Jia(贾锐)2, Ke Tao(陶科)2, San-Jie Liu(刘三姐)1, Shuai Jiang(姜帅)2, Peng-Fei Zhang(张鹏飞)2, Heng-Chao Sun(孙恒超)2, Yong-Tao Li(李永涛)2
1 Department of Physics, University of Science and Technology Beijing, Beijing 100083, China;
2 Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  Atomic-layer-deposited (ALD) aluminum oxide (Al2O3) has demonstrated an excellent surface passivation for crystalline silicon (c-Si) surfaces, as well as for highly boron-doped c-Si surfaces. In this paper, water-based thermal atomic layer deposition of Al2O3 films are fabricated for c-Si surface passivation. The influence of deposition conditions on the passivation quality is investigated. The results show that the excellent passivation on n-type c-Si can be achieved at a low thermal budget of 250 ℃given a gas pressure of 0.15 Torr. The thickness-dependence of surface passivation indicates that the effective minority carrier lifetime increases drastically when the thickness of Al2O3 is larger than 10 nm. The influence of thermal post annealing treatments is also studied. Comparable carrier lifetime is achieved when Al2O3 sample is annealed for 15 min in forming gas in a temperature range from 400 ℃to 450 °C. In addition, the passivation quality can be further improved when a thin PECVD-SiNx cap layer is prepared on Al2O3, and an effective minority carrier lifetime of 2.8 ms and implied Voc of 721 mV are obtained. In addition, several novel methods are proposed to restrain blistering.
Keywords:  atomic layer deposition      Al2O3      surface passivation      effective minority carrier lifetime     
Received:  27 February 2017      Published:  05 September 2017
PACS:  81.15.Gh (Chemical vapor deposition (including plasma-enhanced CVD, MOCVD, ALD, etc.))  
  81.65.Rv (Passivation)  
  88.40.jj (Silicon solar cells)  
Fund: Project supported by the Beijing Municipal Science and Technology Commission, China (Grant No. Z151100003515003), the National Natural Science Foundation of China (Grant Nos. 110751402347, 61274134, 51402064, 61274059, and 51602340), the University of Science and Technology Beijing (USTB) Start-up Program, China (Grant No. 06105033), the Beijing Municipal Innovation and Research Base, China (Grant No. Z161100005016095), the Fundamental Research Funds for the Central Universities, China (Grant Nos. FRF-UM-15-032 and 06400071), and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2015387).
Corresponding Authors:  Xin-He Zheng, Rui Jia     E-mail:  xinhezheng@ustb.edu.cn;jiarui@ime.ac.cn

Cite this article: 

Cai-Xia Hou(侯彩霞), Xin-He Zheng(郑新和), Rui Jia(贾锐), Ke Tao(陶科), San-Jie Liu(刘三姐), Shuai Jiang(姜帅), Peng-Fei Zhang(张鹏飞), Heng-Chao Sun(孙恒超), Yong-Tao Li(李永涛) Crystalline silicon surface passivation investigated by thermal atomic-layer-deposited aluminum oxide 2017 Chin. Phys. B 26 098103

[1] Girisch R B M, Mertens R P and De Keersmaecker R F 1988 IEEE Trans. Electron Dev. 35 203
[2] Kotipalli R, Delamare R, Poncelet O, Tang X, Francis L A and Flandre D 2013 EPJ Photovolt. 4 45107
[3] Dingemans G, Engelhart P, Seguin R and Mandoc M M 2010 35th IEEE PVSC, Honolulu, Hawaii, USA, 20
[4] Zheng X, Yu X G and Yang D R 2013 Acta Phys. Sin. 62 198801 (in Chinese)
[5] Zhang X, Zhang X Z, Tan X Y, Yu Y and Wan C H 2012 Acta Phys. Sin. 61 147303 (in Chinese)
[6] Glunz S W, Biro D, Rein S and Warta W 1999 J. Appl. Phys. 86 683
[7] Jia X J, Zhou C L, Zhu J J, Zhou S and Wang W J 2016 Chin. Phys. B 25 127301
[8] Gao M, Du H W, Yang J, Zhao L, Xu J and Ma Z Q 2017 Chin. Phys. B 26 045201
[9] Vasilopoulou M, Georgiadou D G, Soultati A, Boukos N, Gardelis S and Palilis L C 2015 Adv. Energy Mater. 4 1400214
[10] Koushik D, Verhees W J, Kuang Y H, Veenstra S, Zhang D, Verheijen M A, Creatore M and Schropp R E 2017 Energy Environ. Sci. 10 91
[11] Fabregat-Santiago F, García-Cañadas J, Palomares E, Clifford J N, Haque S A, Durrant J R, Garcia-Belmonte G and Bisquert J 2004 J. Appl. Phys. 96 6903
[12] Richter A, Benick J and Hermle M 2013 IEEE J. Photovolt. 3 236
[13] Dingemans G and Kessels W M M 2012 J. Vac. Sci. Technol. A 30 040802
[14] Huang H, Lv J, Bao Y, Xuan R, Sun S, Sneck S, Li S, Modanese C, Savin H and Wang A 2017 Solar Energy Mater. Solar Cells 161 14
[15] Rahman T, Bonilla R S, Nawabjan A, Wilshaw P R and Boden S A 2017 Solar Energy Mater. Solar Cells 160 444
[16] Barbos C, Blanc-Pelissier D, Fave A, Blanquet E, Crisci A, Fourmond E, Albertini D, Sabac A, Ayadi K and Girard P 2015 Energy Procedia 77 558
[17] Ott A, Klaus J, Johnson J and George S 1997 Thin Solid Films 292 135
[18] Dillon A, Ott A, Way J and George S 1995 Surf. Sci. 322 230
[19] Groner M, Fabreguette F, Elam J and George S 2004 Chem. Mater. 16 639
[20] Sproul A B, Green M A and Stephens A W 1992 J. Appl. Phys. 72 4161
[21] Sinton R A and Cuevas A 1996 Appl. Phys. Lett. 69 2510
[22] Schroder D K 1997 IEEE Trans. Electron. Dev. 44 160
[23] Kerr M J and Cuevas A 2002 J. Appl. Phys. 91 2473
[24] Dingemans G and Kessels W M M 2010 Electrochem. Solid-State Lett. 13 H76
[25] Robertson J 2005 Rep. Prog. Phys. 69 327
[26] Zhang X L, Bang W, Zhao Y L, Chao B and Xia Y 2013 Chin. Phys. B 22 127303
[27] He Y, Dou Y N, Ma X G, Chen S B and Chu J H 2012 Acta Phys. Sin. 61 248102 (in Chinese)
[28] Albadri A M 2014 Thin Solid Films 562 451
[29] Dingemans G, Seguin R, Engelhart P, Sanden M C M V D and Kessels W M M 2010 Phys. Status Solidi (RRL) 4 10
[30] Dingemans G 2010 Appl. Phys. Lett. 97 042112
[31] Dingemans G, Beyer W, Sanden M C M V D and Kessels W M M 2010 Appl. Phys. Lett. 97 042112
[32] Peng Z W, Hsieh P T, Lin Y J, Huang C J and Li C C 2015 Energy Procedia 77 827
[33] Kühnhold-Pospischil S, Saint-Cast P, Richter A and Hofmann M 2016 Appl. Phys. Lett. 109 061602
[34] Zhang X, Liu B W, Xia Y, Li C B, Liu J and Shen Z N 2012 Acta Phys. Sin. 61 187303 (in Chinese)
[35] Schuldis D, Richter A, Benick J and Hermle M 2012 27th European Photovoltaic Solar Energy Conference and Exhibition 2012, Frankfurt, Germany, September, p. 1933
[36] Vermang B, Goverde H, Simons V, Wolf I D, Meersschaut J, Tanaka S, John J, Poortmans J and Mertens R 2012 38th IEEE Photovoltaic Specialists Conference, June 3-8, 2012, p. 001135
[1] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[2] Surface passivation in n-type silicon and its application insilicon drift detector
Yiqing Wu(吴怡清), Ke Tao(陶科), Shuai Jiang(姜帅), Rui Jia(贾锐), Ye Huang(黄也). Chin. Phys. B, 2020, 29(3): 037702.
[3] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[4] Surface termination effects on the electrical characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Shan-Ya Ling(凌山雅), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Ting-Ting Guo(郭婷婷), Xing Wei(魏星), and Qing He(何清)$. Chin. Phys. B, 2020, 29(11): 117701.
[5] Effect of source temperature on phase and metal–insulator transition temperature of vanadium oxide films grown by atomic layer deposition
Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Deshuang Guo(郭德双), Juncheng Liu(刘俊成), Xuan Fang(方铉), Jilong Tang(唐吉龙), Fengyuan Lin(林逢源), Xinwei Wang(王新伟), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(10): 107102.
[6] Fluorescence spectra of colloidal self-assembled CdSe nano-wire on substrate of porous Al2O3/Au nanoparticles
Xin Zhang(张欣), Li-Ping Shao(邵丽萍), Man Peng(彭嫚), Zhong-Chen Bai(白忠臣), Zheng-Ping Zhang(张正平), Shui-Jie Qin(秦水介). Chin. Phys. B, 2019, 28(6): 068103.
[7] Performance enhancement of ZnO nanowires/PbS quantum dot depleted bulk heterojunction solar cells with an ultrathin Al2O3 interlayer
Shuaipu Zang(臧帅普), Yinglin Wang(王莹琳), Meiying Li(李美莹), Wei Su(苏蔚), Meiqi An(安美琦), Xintong Zhang(张昕彤), Yichun Liu(刘益春). Chin. Phys. B, 2018, 27(1): 018503.
[8] Influences of different oxidants on characteristics of La2O3/Al2O3 nanolaminates deposited by atomic layer deposition
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Li Duan(段理), Yan Zhang(张研), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(6): 067701.
[9] Performance and reliability improvement of La2O3/Al2O3 nanolaminates using ultraviolet ozone post treatment
Ji-Bin Fan(樊继斌), Hong-Xia Liu(刘红侠), Bin Sun(孙斌), Li Duan(段理), Xiao-Chen Yu(于晓晨). Chin. Phys. B, 2017, 26(5): 057702.
[10] Variation of passivation behavior induced by sputtered energetic particles and thermal annealing for ITO/SiOx/Si system
Ming Gao(高明), Hui-Wei Du(杜汇伟), Jie Yang(杨洁), Lei Zhao(赵磊), Jing Xu(徐静), Zhong-Quan Ma(马忠权). Chin. Phys. B, 2017, 26(4): 045201.
[11] Interactions between vacancies and prismatic Σ3 grain boundary in α-Al2O3: First principles study
Fei Wang(王飞), Wen-Sheng Lai(赖文生), Ru-Song Li(李如松), Bin He(何彬), Su-Fen Li(黎素芬). Chin. Phys. B, 2016, 25(6): 066804.
[12] Influences of different structures on the characteristics of H2O-based and O3-based LaxAlyO films deposited by atomic layer deposition
Chen-Xi Fei(费晨曦), Hong-Xia Liu(刘红侠), Xing Wang(汪星), Dong-Dong Zhao(赵冬冬), Shu-Long Wang(王树龙), Shu-Peng Chen(陈树鹏). Chin. Phys. B, 2016, 25(5): 058106.
[13] Growth mechanism of atomic-layer-deposited TiAlC metal gatebased on TiCl4 and TMA precursors
Jinjuan Xiang(项金娟), Yuqiang Ding(丁玉强), Liyong Du(杜立永), Junfeng Li(李俊峰),Wenwu Wang(王文武), Chao Zhao(赵超). Chin. Phys. B, 2016, 25(3): 037308.
[14] Influences of annealing on structural and compositional properties of Al2O3 thin films grown on 4H-SiC by atomic layer deposition
Li-Xin Tian(田丽欣), Feng Zhang(张峰), Zhan-Wei Shen(申占伟), Guo-Guo Yan(闫果果), Xing-Fang Liu(刘兴昉), Wan-Shun Zhao(赵万顺), Lei Wang(王雷), Guo-Sheng Sun(孙国胜), Yi-Ping Zeng(曾一平). Chin. Phys. B, 2016, 25(12): 128104.
[15] Atomic-layer-deposited Al2O3 and HfO2 on InAlAs: A comparative study of interfacial and electrical characteristics
Li-Fan Wu(武利翻), Yu-Ming Zhang(张玉明), Hong-Liang Lv(吕红亮), Yi-Men Zhang(张义门). Chin. Phys. B, 2016, 25(10): 108101.
No Suggested Reading articles found!