Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 097302    DOI: 10.1088/1674-1056/26/9/097302

Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires

Hui Sun(孙慧)1, Bing-Can Liu(刘炳灿)2, Qiang Tian(田强)1
1 Department of Physics, Beijing Normal University, Beijing 100875, China;
2 Department of Fundamental Courses, Academy of Armored Forces Engineering, Beijing 100072, China
Abstract  By the fractal dimension method, the polaron properties in cylindrical GaAs/AlxGa1-xAs core-shell nanowire are explored. In this study, the polaron effects in GaAs/AlxGa1-xAs core-shell nanowire at different values of shell width and aluminum concentration are discussed. The polaron binding energy, polaron mass shift and fractal dimension parameter are numerically worked out each as a function of core radius. The calculation results show that the binding energy and mass shift of the polaron first increase and then decrease as the core radius increases, forming their corresponding maximum values for different aluminum concentrations at a given shell width. Polaron problems in the cylindrical GaAs/AlxGa1-xAs core-shell nanowire are solved simply by using the fractal dimension method to avoid complex and lengthy calculations.
Keywords:  core-shell nanowire      core radius      polaron effects      fractal dimension  
Received:  03 February 2017      Revised:  01 June 2017      Accepted manuscript online: 
PACS:  73.63.-b (Electronic transport in nanoscale materials and structures)  
  73.90.+f (Other topics in electronic structure and electrical properties of surfaces, interfaces, thin films, and low-dimensional structures)  
  73.63.Nm (Quantum wires)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10574011 and 10974017).
Corresponding Authors:  Qiang Tian     E-mail:

Cite this article: 

Hui Sun(孙慧), Bing-Can Liu(刘炳灿), Qiang Tian(田强) Polaron effects in cylindrical GaAs/AlxGa1-xAs core-shell nanowires 2017 Chin. Phys. B 26 097302

[1] He X F 1991 Phys. Rev. B 43 2063
[2] Matos-Abiague A 2002 J. Phys. Condens. Matter 14 4543
[3] Matos-Abiague A 2002 Semicond. Sci. Technol. 17 150
[4] Matos-Abiague A 2002 Phys. Rev. B 65 165321
[5] Wu Z H, Li H, Yan L X, Liu B C and Tian Q 2013 Physica B 410 28
[6] Wu Z H, Li H, Yan L X, Liu B C and Tian Q 2013 Superlattices Microstruct. 55 16
[7] Li H, Liu B C, Shi B X, Dong S Y and Tian Q 2015 Front. Phys. 10 107302
[8] Wu Z H, Chen L and Tian Q 2015 Int. J. Mod Phys B 29 1550213
[9] Vartanian A L, Asatryan A L and Vardanyan L A 2013 Physica E 47 134
[10] Christol P, Lefebvre P and Mathieu H 1993 J. Appl. Phys. 5626 74
[11] Lefebvre P, Christol P and Mathieu H 1992 Phys. Rev. B 46 13603
[12] Thilagam A and Matos-Abiague A 2004 J. Phys.: Condens. Matter 16 3981
[13] Gómez E R, Oliveira L E and de Dios-Leyva M 1999 J. Appl. Phys. 85 4045
[14] Mikhailov I D, Betancur F J, Escorcia R A and Sierra-Ortega J 2003 Phys. Rev. B 67 115317
[15] Kundrotas J, Cerškus A, Ašmontas S, Valusis G, Sherlikerl B and Harrison M P 2005 Phys. Rev. B 72 235322
[16] Kundrotas J, Cerškus A, Ašmontas S, Valušis G, Halsall M P, Johannessen E and Harrison P 2007 Semicond. Sci. Technol. 22 1070
[17] Gao J and Zhang M C 2016 Chin. Phys. Lett. 33 010303
[18] Mayer B, Rudolph D, Schnell J, Morkötter S, Winnerl J, Treu J, Müller K, Bracher G, Abstreiter G, Koblmüller G and Finley J J 2013 Nat. Commun. 4 2931
[19] Lubk A, Wolf D, Prete P, Lovergine N, Niermann T, Sturm S and Lichte H 2014 Phys. Rev. B 90 125404
[20] Morkötter S, Jeon N, Rudolph D, Loitsch B, Spirkoska D, Hoffmann E, Döblinger M, Matich S, Finley J J, Lauhon L J, Abstreiter G and Koblmüller G 2015 Nano Lett. 15 3295
[21] Jiang N, Parkinson P, Gao Q, Breuer S, Tan H H, Wong-Leung J and Jagadish C 2012 Appl. Phys. Lett. 101 023111
[22] Rudolph D, Funk S, Döblinger M, Morkötter S, Hertenberger S, Schweickert L, Becker J, Matich S, Bichler M, Spirkoska D, Zardo I, Finley J J, Abstreiter G and Koblmüller G 2013 Nano Lett. 13 1522
[23] Aciksoz E, Bayrak O and Soylu A 2016 Chin. Phys. B 25 100302
[24] Smondyrev M A, Gerlach B and Dzero M O 2000 Phys. Rev. B 62 16692
[25] Cheng R J and Cheng Y M 2016 Chin. Phys. B 25 020203
[26] Song X D, Dong S H and Zhang Y 2016 Chin. Phys. B 25 050302
[27] Khalid S A 2014 Chin. Phys. Lett. 31 120301
[28] Diwaker and Chakraborty A 2015 Chin. Phys. Lett. 32 070301
[29] Hocevar M, Giang L T T, Songmuang R, Hertog M D, Besombes L, Bleuse J, Niquet Y and Pelekanos N T 2013 Appl. Phys. Lett. 102 191103
[30] Songmuang R, Giang L T T, Bleuse J, Hertog M D, Niquet Y M, Dang L S and Mariette H 2016 Nano Lett. 16 3426
[1] Dynamic crossover in [VIO2+][Tf2N-]2 ionic liquid
Gan Ren(任淦). Chin. Phys. B, 2021, 30(1): 016105.
[2] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[3] Fractal dynamics in the ionization of helium Rydberg atoms
Xiulan Xu(徐秀兰), Yanhui Zhang(张延惠), Xiangji Cai(蔡祥吉), Guopeng Zhao(赵国鹏), Lisha Kang(康丽莎). Chin. Phys. B, 2016, 25(11): 110301.
[4] Biometric feature extraction using local fractal auto-correlation
Chen Xi, Zhang Jia-Shu. Chin. Phys. B, 2014, 23(9): 096401.
[5] Tortuosity for streamlines in porous media
Kou Jian-Long,Tang Xue-Ming,Zhang Hai-Yan,Lu Hang-Jun,Wu Feng-Min,Xu You-Sheng,Dong Yong-Sheng. Chin. Phys. B, 2012, 21(4): 044701.
[6] Universal critical properties of the Eulerian bond-cubic model
Ding Cheng-Xiang, Yao Gui-Yuan, Li Song, Deng You-Jin, Guo Wen-An. Chin. Phys. B, 2011, 20(7): 070504.
[7] Two-phase flow in correlated pore-throat random porous media
Yao Kai-Lun, Tian Ju-Ping. Chin. Phys. B, 2002, 11(4): 358-365.
No Suggested Reading articles found!