Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 094202    DOI: 10.1088/1674-1056/26/9/094202

Orbital angular momentum density and spiral spectra of Lorentz-Gauss vortex beams passing through a single slit

Zhi-Yue Ji(季志跃), Guo-Quan Zhou(周国泉)
School of Sciences, Zhejiang A & F University, Lin'an 311300, China

Based on the Hermite-Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz-Gauss vortex beam with one topological charge passing through a single slit is derived. By using the obtained analytical expressions, the properties of the Lorentz-Gauss vortex beam passing through a single slit are numerically demonstrated. According to the intensity distribution or the phase distribution of the Lorentz-Gauss vortex beam, one can judge whether the topological charge is positive or negative. The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively. The optimal choice for measuring the topological charge of the diffracted Lorentz-Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.

Keywords:  Lorentz-Gauss vortex beam      single slit      orbital angular momentum density      topological charge  
Received:  24 March 2017      Revised:  19 April 2017      Published:  05 September 2017
PACS:  42.25.Fx (Diffraction and scattering)  
  42.50.Tx (Optical angular momentum and its quantum aspects)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  42.79.Ag (Apertures, collimators)  

Project supported by the National Natural Science Foundation of China (Grant No. 11574272) and Zhejiang Provincial Natural Science Foundation of China (Grant No. LY16A040014).

Corresponding Authors:  Guo-Quan Zhou     E-mail:

Cite this article: 

Zhi-Yue Ji(季志跃), Guo-Quan Zhou(周国泉) Orbital angular momentum density and spiral spectra of Lorentz-Gauss vortex beams passing through a single slit 2017 Chin. Phys. B 26 094202

[1] Dumke P 1975 J. Quantum Electron. 11 400
[2] Gawhary O E and Severini S 2006 J. Opt. A: Pure Appl. Opt. 8 409
[3] Zhou G Q and Chu X X 2010 Opt. Laser Technol. 42 1093
[4] Zhou G Q 2009 Opt. Laser Technol. 41 953
[5] Naqwi A and Durst F 1990 Appl. Opt. 29 1780
[6] Yang J, Chen T T, Ding G L and Yuan X 2008 Proc. SPIE 6824 68240A
[7] Zhou G Q 2010 Chin. Phys. B 19 064201
[8] Zhou G Q 2011 Chin. Phys. B 20 0114103
[9] Zhou G Q 2009 Appl. Phys. B 96 149
[10] Zhou G Q 2008 J. Opt. Soc. Am. A 25 2594
[11] Torre A 2012 Appl. Phys. B 109 671
[12] Saraswathi R C, Prabakaran K, Rajesh K B and Jaroszewicz Z 2014 Optik 125 5339
[13] Jiang Y F, Huang K K and Lu X H 2011 Opt. Express 19 9708
[14] Zhou G Q 2009 Acta Phys. Sin. 58 6185 (in Chinese)
[15] Zhou G Q and Chu X X 2010 Opt. Express 18 726
[16] Zhao C L and Cai Y J 2010 J. Mod. Opt. 57 375
[17] Wang X, Liu Z R and Zhao D M 2014 J. Opt. Soc. Am. A 31 872
[18] Zheng H P, Chen R P and Ooi C H R 2013 Lasers Eng. 24 345
[19] Keshavarz A and Honarasa G 2014 Commun. Theor. Phys. 61 241
[20] Zhou G Q 2014 J. Opt. Soc. Am. A 31 1239
[21] Rui F, Zhang D W, Ting M, Gao X M and Zhuang S L 2013 Optik 124 2969
[22] Miao Y, Wang G X, Zhan Q F, Sui G R, Zhang R F, Lu X M and Gao X M 2017 Optik 128 201
[23] Qu Q L, Lu X M, Peng J and Su W X 2017 Optik 129 50
[24] Zeng X Y, Miao Y, Wang G X, Zhan Q F, Hong R J and Zhang R F 2017 Optik 130 481
[25] Torre A 2016 Appl. Phys. B 122 55
[26] Ni Y Z and Zhou G 2013 Opt. Commun. 291 19
[27] Ni Y Z and Zhou G 2012 Appl. Phys. B 108 883
[28] Zhou G Q and Ru G Y 2013 PIER 143 143
[29] Zhou G Q, Ji Z Y and Ru G Y 2016 Laser Phys. 26 075002
[30] Sztul H I and Alfano R R 2006 Opt. Lett. 31 999
[31] Guo C S, Yue S J and Wei G X 2009 Appl. Phys. Lett. 94 231104
[32] Tao H, Liu Y X, Chen Z Y and Pu J X 2012 Appl. Phys. B 106 927
[33] Liu Y X, Sun S H, Pu J X and Lü B D 2013 Opt. Laser Technol. 45 473
[34] Lyubomir S, Suzana T, Ivan S, Ljiljana J and Alexander D 2015 Opt. Commun. 350 301
[35] Collins S A 1970 J. Opt. Soc. Am. 60 1168
[36] Schmidt P P 1976 J. Phys. B: At. Mol. Opt. Phys. 9 2331
[37] Wen J J and Breazeale M A 1990 Computational Acoustics (Lee D, Cakmak A and Vichnevetsky R, Ed.) (New York: Elsevier)
[38] Gradshteyn I S and Ryzhik I M 1980 Table of Integrals, Series, and Products (New York: Academic Press)
[39] Gao C Q, Wei G H and Webe H 2000 Sci. China Ser. A-Math. 43 1306
[40] Torner L and Torres J P 2005 Opt. Express 13 873
[41] Ni Y Z and Zhou G Q 2015 Lasers in Eng. 30 73
[42] Zhou G Q and Ru G Y 2015 Lasers in Eng. 30 159
[43] Zhou G Q and Ru G Y 2013 PIER 141 751
[44] Wang L, Zhao S M, Gong L Y and Cheng W W 2015 Chin. Phys. B 24 120307
[45] Zou L, Wang L, Zhao S M and Chen H W 2016 Chin. Phys. B 25 114215
[1] Hybrid vector beams with non-uniform orbital angular momentum density induced by designed azimuthal polarization gradient
Lei Han(韩磊), Shuxia Qi(齐淑霞), Sheng Liu(刘圣), Peng Li(李鹏), Huachao Cheng(程华超), Jianlin Zhao(赵建林). Chin. Phys. B, 2020, 29(9): 094203.
[2] Measuring orbital angular momentum of acoustic vortices based on Fraunhofer’s diffraction
Chao-Fan Gong(龚超凡), Jing-Jing Li(李晶晶), Kai Guo(郭凯), Hong-Ping Zhou(周红平)†, and Zhong-Yi Guo(郭忠义)‡. Chin. Phys. B, 2020, 29(10): 104301.
[3] Propagation dynamics of off-axis noncanonical vortices in a collimated Gaussian beam
Cheng Yin(殷澄), Xuefen Kan(阚雪芬), Hailang Dai(戴海浪), Minglei Shan(单鸣雷), Qingbang Han(韩庆邦), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(3): 034205.
[4] The global monopole spacetime and its topological charge
Hongwei Tan(谭鸿威), Jinbo Yang(杨锦波), Jingyi Zhang(张靖仪), Tangmei He(何唐梅). Chin. Phys. B, 2018, 27(3): 030401.
[5] Multiple off-axis acoustic vortices generated by dual coaxial vortex beams
Wen Li(李雯), Si-Jie Dai(戴思捷), Qing-Yu Ma(马青玉), Ge-Pu Guo(郭各朴), He-Ping Ding(丁鹤平). Chin. Phys. B, 2018, 27(2): 024301.
[6] Composite optical vortices in noncollinear Laguerre--Gaussian beams and their propagation in free space
Cheng Ke, Liu Pu-Sheng, Lü Bai-Da. Chin. Phys. B, 2008, 17(5): 1743-1751.
[7] Topological susceptibility from overlap fermion
Ying He-Ping, Zhang Jian-Bo. Chin. Phys. B, 2003, 12(12): 1374-1377.
No Suggested Reading articles found!