Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(9): 093301    DOI: 10.1088/1674-1056/26/9/093301
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis

Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武)
College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  

A model of an optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis is presented. Different coordinate frames for nuclear spin polarization vector are introduced, and theoretical calculation is conducted to analyze this model. We demonstrate that when the optical pumping nuclear magnetic resonance system rotates in a plane parallel to the quantization axis, it will maintain a steady state with respect to the quantization axis which is independent of rotational speed and direction.

Keywords:  optical pumping      nuclear magnetic resonance      spin polarization  
Received:  10 May 2017      Revised:  03 June 2017      Accepted manuscript online: 
PACS:  33.25.+k (Nuclear resonance and relaxation)  
  32.80.Xx (Level crossing and optical pumping)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61475192).

Corresponding Authors:  Jie Yuan, Xing-Wu Long     E-mail:  jieyuan@nudt.edu.cn;xwlong110@sina.com

Cite this article: 

Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武) Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis 2017 Chin. Phys. B 26 093301

[1] Rabi I I, Zacharias J R, Millman S and Kusch P 1938 Phys. Rev. 53 318
[2] Bloch F and Siegert A 1940 Phys. Rev. 57 522
[3] Bloch F 1946 Phys. Rev. 70 460
[4] Hane F T, Li T, Smylie P, Pellizzari R M, Plata J A, DeBoef B and Albert M S 2017 Sci. Rep. 7 41027
[5] Wagner L, Kalli C, Fridjonsson E O, May E F, Stanwix P L, Graham B F, Carroll M R J and Johns M L 2016 Meas. Sci. Tech. 27 105501
[6] Wang S and Chen L 2016 Chin. Phys. B 25 018202
[7] Bulatowicz M Griffith R, Larsen M, Mirijanian J, Fu C B, Smith E, Snow W M, Yan H and Walker T G 2013 Phys. Rev. Lett. 111 102001
[8] Anjusha V S, Hegde S S and Mahesh T S 2016 Phys. Lett. A 380 577
[9] Kammerlander P and Anders J 2016 Sci. Rep. 6 22174
[10] Donley E A 2010 Sensors, 2010 IEEE, November 1-4, 2010, Waikoloa, USA, p. 17
[11] Zhang D W, Xu Z Y, Zhou M and Xu X Y 2017 Chin. Phys. B 26 023201
[12] Happer W 1972 Rev. Mod. Phys. 44 169
[13] Walker T G and Happer W 1997 Rev. Mod. Phys. 69 629
[14] Larsen M and Bulatowicz M 2012 2012 IEEE International Frequency Control Symposium Proceedings, May 21-24, 2012 Baltimore, USA, p. 1
[15] Meyer D and Larsen M 2014 Gyroscopy and Navigation 5 75
[16] Prikhodko I P, Trusov A A and Shkel A M 2014 2014 International Symposium on Inertial Sensors and Systems (ISISS), February 25-26, 2014, Laguna Beach, USA, p. 1
[17] Eklund E J 2008 Microgyroscope Based on Spin-polarized Nuclei (Ph.D. Thesis) (Irvine: University of California, Irvine)
[18] Greenspan R L 1995 Navigation 42 165
[19] Cohen-Tannoudji C, Dupont-Roc J, Haroche S and Laloë F 1970 Rev. Phys. Appl. 5 95
[20] Seltzer S J 2008 Developments in Alkali-metal Atomic Magnetometry(Ph.D. Thesis) (Princeton: Princeton University)
[1] Current spin polarization of a platform molecule with compression effect
Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅). Chin. Phys. B, 2022, 31(7): 077202.
[2] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[3] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[4] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[5] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[6] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[7] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[8] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[9] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[10] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[11] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[12] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[13] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[14] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[15] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
No Suggested Reading articles found!