Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 087801    DOI: 10.1088/1674-1056/26/8/087801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Shape controllable synthesis and enhanced upconversion photoluminescence of β-NaGdF4:Yb3+, Er3+ nanocrystals by introducing Mg2+

Yong-Xin Yang(杨永馨)1,2, Zheng Xu(徐征)1,2, Su-Ling Zhao(赵谡玲)1,2, Zhi-Qin Liang(梁志琴)1,2, Wei Zhu(朱薇)1,2, Jun-Jie Zhang(张俊杰)1,2
1 Key Laboratory of Luminescence and Optical Information, Ministry of Education, Beijing Jiaotong University, Beijing 100044, China;
2 Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing 100044, China
Abstract  

Different concentrations of Mg2+-doped hexagonal phase NaGdF4:Yb3+, Er3+ nanocrystals (NCs) were synthesized by a modified solvothermal method. Successful codoping of Mg2+ ions in upconversion nanoparticles (UCNPs) was supported by XRD, SEM, EDS, and PL analyses. The effects of Mg2+ doping on the morphology and the intensity of the upconversion (UC) emission were discussed in detail. It turned out that with the concentration of Mg2+ increasing, the morphology of the nanoparticles turn to change gradually and the UC emission was increasing gradually as well. Notably the UC fluorescence intensities of Er3+ were gradually improved owing to the codoped Mg2+ and then achieved a maximum level as the concentration of Mg2+ ions was 60 mol% from the amendment of the crystal structure of β -NaGdF4:Yb3+, Er3+ nanoparticles. Moreover, the UC luminescence properties of the rare-earth (Yb3+, Er3+ ions codoped NaGdF4 nanocrystals were investigated in detail under 980-nm excitation.

Keywords:  NaGdF4:Yb3+/Er3+ nanoparticles      Mg2+ ions      morphology      upconversion photoluminescence  
Received:  16 February 2017      Revised:  08 May 2017      Published:  05 August 2017
PACS:  78.40.-q (Absorption and reflection spectra: visible and ultraviolet)  
  74.25.Gz (Optical properties)  
  42.70.-a (Optical materials)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2013AA032205), the Key Project of Beijing Scientific Committee, China (Grant No. D161100003416001), the Fundamental Research Funds for the Central Universities, China (Grant No. 2016JBM066), and the National Natural Science Foundation of China (Grant Nos. 51272022 and 11474018).

Corresponding Authors:  Zheng Xu     E-mail:  zhengxu@bjtu.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Yong-Xin Yang(杨永馨), Zheng Xu(徐征), Su-Ling Zhao(赵谡玲), Zhi-Qin Liang(梁志琴), Wei Zhu(朱薇), Jun-Jie Zhang(张俊杰) Shape controllable synthesis and enhanced upconversion photoluminescence of β-NaGdF4:Yb3+, Er3+ nanocrystals by introducing Mg2+ 2017 Chin. Phys. B 26 087801

[1] Wang F, Han Y, Lim C S, Lu Y H, Wang J, Xu J, Chen H Y, Zhang C, Hong M H and Liu X G 2010 Nature 463 1061
[2] Gao W, Dong J, Wang R B, Wang Z J and Zheng H R 2016 Acta Phys. Sin. 65 084205 (in Chinese)
[3] Zhao C, Meng Q Y and Sun W J 2015 Acta Phys. Sin. 64 107803 (in Chinese)
[4] Dai L, Liu C R, Tan C, Yan Z H and Xu Y H 2017 Chin. Phys. B 26 044207
[5] Du X Y, Wang X F, Meng L, Bu Y Y and Yan X H 2017 Nanoscale Res. Lett. 12 163
[6] Dai G T, Zhong Z Q, Wu X F, Zhan S P, Hu S G, Hu P, Hu J S, Wu S B, Han J B and Liu Y X 2017 Nanotechnology 28 155702
[7] Dong B, Xu S, Sun J, Bi S, Li D, Bai X, Wang Y, Wang L P and Song H W 2011 J. Mater. Chem. 21 6193
[8] Wang F, Banerjee D, Liu Y S, Chen X Y and Liu X Q 2010 Analyst. 135 1839
[9] Ding M Y, Chen D Q, Wan Z Y, Zhou Y, Zhong J S, Xi J H and Ji Z Q 2015 J. Mater. Chem. C 3 5372
[10] Liu J, Chen G Y, Hao S W and Yang C H 2017 Nanoscale 9 91.
[11] Biju S, Harris M, Vander Elst L, Wolberg M, Kinschhock C and Parac-Vogt T N 2016 Rsc. Adv. 6 61443
[12] Wu S J, Duan N, Shi Z, Fang C C and Wang Z P 2014 Anal. Chem. 86 3100
[13] Wang Y H, Wang H G, Liu D P, Song S Y, Wang X and Zhang H J 2013 Biomaterials 34 7715
[14] Huang X Y 2016 Dyes Pigments 130 99
[15] Shan G B and Demopoulos G P 2010 Adv. Mater. 22 4373
[16] Huang X Y, Han S Y, HuangW and Liu X Q 2013 Chem. Soc. Rev. 42 173
[17] Krämer K W, Biner D, Frei G, Güdel H U, Hehlen M P and Lüthi S R 2004 Chem. Mater. 16 1244
[18] Aebischer A, Hostettler M, Hauser J, Krämer K, Weber T, Güdel H U and Bürgi H B 2006 Angew. Chem. 118 2869
[19] Yi J, Qu J B, Wang Y A and Zhou D C 2014 Chin. Phys. B 23 104224
[20] Yang J Z, Qiu J B, Yang Z W, Song Z G, Yang Y and Zhou D C 2015 Acta Phys. Sin. 64 138101 (in Chinese)
[21] Li D, Ma Q L, Xi X, Dong X T, Yu W S, Wang J X and Liu G X 2017 Chem. Eng. J. 309 230
[22] Ramasamy P, Chandra P, Rhee S W and Kim J 2013 Nanoscale 5 8711.
[23] Lei L, Chen D Q, Xu J, Zhang R and Wang Y S 2014 Chem. Asian J. 9 728
[24] Gao W, Zheng H R, Han Q Y, He E J, Gao F Q and Wang R B 2014 J. Mater. Chem. C 2 5327
[25] Wang L Y and Li Y D 2007 Chem. Mater. 19 727
[26] Liang X, Wang X, Zhuang J, Peng Q and Li Y 2007 Adv. Funct. Mater. 17 2757
[27] Zeng S J, Ren G Z, Xu C F and Yang Q B 2011 CrystEngComm. 13 1384.
[28] Krämer K W, Biner D, Frei G, Güdel H U, Hehlen M P and Lüthi S R 2004 Chem. Mater. 16 1244
[29] Aebischer A, Hostettler M, Hauser J, Krämer K, Weber T, Güdel H U and Bürgi H B 2006 Angew. Chem. 118 2869
[30] Blasse G and Grabmaier B C 1994 Luminescent Materialsewline (Berlin/Heidelberg: Springer) p. 91
[31] Judd B R 1962 Phys. Rev. 127 750
[32] Zhao C Z, Kong X G, Liu X M, Tu L P, Wu F, Zhang Y L, Liu K, Zeng Q H and Zhang H 2013 Nanoscal 5 8084
[33] Wang L Y and Li Y D 2007 Chem. Mater. 19 727
[34] Zeng S J, Ren G Z, Xu C F and Yang Q B 2011 CrystEngComm. 13 1384
[35] Di Q M, Sun Y M, Xu Q G, Han L, Xue B and Sun J Y 2015 Chin. Phys. B 24 067801
[36] Dai L, Xu C, Zhang Y, Li D Y and Xu Y H 2013 Chin. Phys. B 22 094201
[1] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[2] Multi-phase-field simulation of austenite peritectic solidification based on a ferrite grain
Chao Yang(杨超), Jing Wang(王静), Junsheng Wang(王俊升), Yu Liu(刘瑜), Guomin Han(韩国民), Haifeng Song(宋海峰), and Houbing Huang(黄厚兵). Chin. Phys. B, 2021, 30(1): 018201.
[3] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[4] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[5] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[6] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[7] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[8] Exploring alkylthiol additives in PBDB-T:ITIC blended active layers for solar cell applications
Xiang Li(李想), Zhiqun He(何志群), Mengjie Sun(孙盟杰), Huimin Zhang(张慧敏), Zebang Guo(郭泽邦), Yajun Xu(许亚军), Han Li(李瀚), Chunjun Liang(梁春军), Xiping Jing(荆西平). Chin. Phys. B, 2019, 28(8): 088802.
[9] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[10] Self-assembled monolayer modified copper(I) iodide hole transport layer for efficient polymer solar cells
Yuancong Zhong(钟远聪), Qilun Zhang(张琪伦), You Wei(魏优), Qi Li(李琦), Yong Zhang(章勇). Chin. Phys. B, 2018, 27(7): 078802.
[11] Fabrication of mixed perovskite organic cation thin films via controllable cation exchange
Yu-Long Zhao(赵宇龙), Jin-Feng Wang(王进峰), Ben-Guang Zhao(赵本广), Chen-Chen Jia(贾晨晨), Jun-Peng Mou(牟俊朋), Lei Zhu(朱磊), Jian Song(宋健), Xiu-Quan Gu(顾修全), Ying-Huai Qiang(强颖怀). Chin. Phys. B, 2018, 27(2): 024208.
[12] An infrared and visible image fusion method based uponmulti-scale and top-hat transforms
Gui-Qing He(何贵青), Qi-Qi Zhang(张琪琦), Jia-Qi Ji(纪佳琪), Dan-Dan Dong(董丹丹), Hai-Xi Zhang(张海曦), Jun Wang(王珺). Chin. Phys. B, 2018, 27(11): 118706.
[13] Growth and characterization of AlN epilayers using pulsed metal organic chemical vapor deposition
Zesheng Ji(吉泽生), Lianshan Wang(汪连山), Guijuan Zhao(赵桂娟), Yulin Meng(孟钰淋), Fangzheng Li(李方政), Huijie Li(李辉杰), Shaoyan Yang(杨少延), Zhanguo Wang(王占国). Chin. Phys. B, 2017, 26(7): 078102.
[14] Nucleation mechanism and morphology evolution of MoS2 flakes grown by chemical vapor deposition
He-Ju Xu(许贺菊), Jian-Song Mi(米建松), Yun Li(李云), Bin Zhang(张彬), Ri-Dong Cong(丛日东), Guang-Sheng Fu(傅广生), Wei Yu(于威). Chin. Phys. B, 2017, 26(12): 128102.
[15] Importance of PbI2 morphology in two-step deposition of CH3NH3PbI3 for high-performance perovskite solar cells
Hui Wei(韦慧), Yang Tang(汤洋), Bo Feng(冯波), Hui You(尤晖). Chin. Phys. B, 2017, 26(12): 128801.
No Suggested Reading articles found!