Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 083201    DOI: 10.1088/1674-1056/26/8/083201

Polarization control of multi-photon absorption under intermediate femtosecond laser field

Wenjing Cheng(程文静)1, Pei Liu(刘沛)2, Guo Liang(梁果)1, Ping Wu(吴萍)1, Tianqing Jia(贾天卿)2, Zhenrong Sun(孙真荣)2, Shian Zhang(张诗按)2
1 School of Electrical & Electronic Information, Shangqiu Normal University, Shangqiu 476000, China;
2 State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China

It has been shown that the femtosecond laser polarization modulation is a very simple and well-established method to control the multi-photon absorption process by the light-matter interaction. Previous studies mainly focused on the multi-photon absorption control in the weak field. In this paper, we further explore the polarization control behavior of multi-photon absorption process in the intermediate femtosecond laser field. In the weak femtosecond laser field, the second-order perturbation theory can well describe the non-resonant two-photon absorption process. However, the higher order nonlinear effect (e.g., four-photon absorption) can occur in the intermediate femtosecond laser field, and thus it is necessary to establish new theoretical model to describe the multi-photon absorption process, which includes the two-photon and four-photon transitions. Here, we construct a fourth-order perturbation theory to study the polarization control behavior of this multi-photon absorption under the intermediate femtosecond laser field excitation, and our theoretical results show that the two-photon and four-photon excitation pathways can induce a coherent interference, while the coherent interference is constructive or destructive that depends on the femtosecond laser center frequency. Moreover, the two-photon and four-photon transitions have the different polarization control efficiency, and the four-photon absorption can obtain the higher polarization control efficiency. Thus, the polarization control efficiency of the whole excitation process can be increased or decreased by properly designing the femtosecond laser field intensity and laser center frequency. These studies can provide a clear physical picture for understanding and controlling the multi-photon absorption process in the intermediate femtosecond laser field, and also can provide a theoretical guidance for the future experimental realization.

Keywords:  multi-photon absorption      laser polarization      femtosecond laser field  
Received:  18 April 2017      Revised:  14 May 2017      Published:  05 August 2017
PACS:  32.80.Qk (Coherent control of atomic interactions with photons)  
  32.80.Wr (Other multiphoton processes)  
  42.65.-k (Nonlinear optics)  

Project supported by the Program of Introducing Talents of Discipline to Universities (Grant No. B12024), the National Natural Science Foundation of China (Grant Nos. 51132004, 11474096, 11547216, 11547220, and 11604199), the Science Fund from the Science and Technology Commission of Shanghai Municipality (Grant No. 14JC1401500), and the Higher Education Key Program of He'nan Province of China (Grant Nos. 17A140025 and 16A140030).

Corresponding Authors:  Wenjing Cheng, Pei Liu     E-mail:;
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Wenjing Cheng(程文静), Pei Liu(刘沛), Guo Liang(梁果), Ping Wu(吴萍), Tianqing Jia(贾天卿), Zhenrong Sun(孙真荣), Shian Zhang(张诗按) Polarization control of multi-photon absorption under intermediate femtosecond laser field 2017 Chin. Phys. B 26 083201

[1] Schilders S P and Gu M 1999 Appl. Opt. 38 720
[2] Moreaux L, Sandre O, Blanchard-Desce M and Mertz J 2000 Opt. Lett. 25 320
[3] Larson D R, Zipfel W R, Williams R M, Clark S W, Bruchez M P, Wise F W and Webb W W 2003 Science 300 1434
[4] Hernández F E, Belfield K D, Cohanoschi I, Balu M and Schafer K J 2004 Appl. Opt. 43 5394
[5] Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287
[6] Dudovich N, Dayan B, Faeder S M G and Silberberg Y 2001 Phys. Rev. Lett. 86 47
[7] Lozovoy V V, Pastirk I and Walowicz K A and Dantus M 2003 J. Chem. Phys. 118 3187
[8] Zhang H, Zhang S, Wang Z and Sun Z 2010 Chem. Phys. B 19 113208
[9] Meshulach D and Silberberg Y 1998 Nature 396 239
[10] Lee W, Kim H, Kim K and Ahn J 2015 Phys. Rev. A 92 033415
[11] Barmes I, Witte S and Eikema K S E 2013 Nat. Photon. 7 38
[12] Lee S, Lim J, Park C Y and Ahn J 2011 Opt. Express 19 2266
[13] Suzuki T, Minemoto S, Kanai T and Sakai H 2004 Phys. Rev. Lett. 92 133005
[14] Brixner T, Krampert G, Pfeifer T, Selle R and Gerber G 2004 Phys. Rev. Lett. 92 208301
[15] Zhang S, Zhang H, Lu C, Jia T, Wang Z and Sun Z 2010 J. Chem. Phys. 133 214504
[16] Lu C, Zhang H, Zhang S, and Sun Z 2012 Chem. Phys. B 21 123202
[17] Yao Y, Zhang S, Zhang H, Ding J, Jia T, Qiu J and Sun Z 2014 Sci. Rep. 4 07295
[18] Zhang H, Yao Y, Zhang S, Lu C and Sun Z 2016 Chin. Phys. B 25 023201
[19] Oron D, Dudovich N and Silberberg Y 2003 Phys. Rev. Lett. 90 213902
[20] Gandman A, Chuntonov L, Rybak L and Amitay Z 2007 Phys. Rev. A 75 031401
[21] Gandman A, Chuntonov L, Rybak L and Amitay Z 2007 Phys. Rev. A 76 053419
[22] Chuntonov L, Rybak L, Gandman A and Amitay Z 2008 J. Phys. B: At. Mol. Opt. Phys. 41 035504
[23] Chuntonov L, Rybak L, Gandman A and Amitay Z 2008 Phys. Rev. A 77 021403
[24] Chuntonov L, Rybak L, Gandman A and Amitay Z 2010 Phys. Rev. A 81 045401
[1] Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy
Lan Yang(杨岚), Miao Liu(刘淼), Yi-Tong Liu(刘奕彤), Qing-Xue Li(李庆雪), Su-Yu Li(李苏宇), Yuan-Fei Jiang(姜远飞), An-Min Chen(陈安民), Ming-Xing Jin(金明星). Chin. Phys. B, 2020, 29(6): 065203.
[2] Relationship measurement between ac-Stark shift of 40Ca+ clock transition and laser polarization direction
Hong-Fang Song(宋红芳), Shao-Long Chen(陈邵龙), Meng-Yan Zeng(曾孟彦), Yao Huang(黄垚), Hu Shao(邵虎), Yong-Bo Tang(唐永波), Hua Guan(管桦), Ke-Lin Gao(高克林). Chin. Phys. B, 2017, 26(9): 099501.
[3] Coulomb explosion of CS2 molecule under an intense femtosecond laser field
Xiao Wang(王潇), Jian Zhang(张健), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2016, 25(5): 053301.
[4] Up-conversion luminescence polarization control in Er3+-doped NaYF4 nanocrystals
Hui Zhang(张晖), Yun-Hua Yao(姚云华), Shi-An Zhang(张诗按), Chen-Hui Lu(卢晨晖), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2016, 25(2): 023201.
[5] Spectral decomposition at complex laser polarization configuration
Yang Hai-Feng, Gao Wei, Cheng Hong, Liu Hong-Ping. Chin. Phys. B, 2013, 22(5): 053201.
[6] Polarization and phase control of two-photon absorption in an isotropic molecular system
Lu Chen-Hui, Zhang Hui, Zhang Shi-An, Sun Zhen-Rong. Chin. Phys. B, 2012, 21(12): 123202.
[7] Theoretical study of the influence of intense femtosecond laser field on the evolution of the wave packet and the population of NaRb molecule
Ma Ning, Wang Mei-Shan, Yang Chuan-Lu, Ma Xiao-Guang, Wang De-Hua. Chin. Phys. B, 2010, 19(2): 023301.
[8] The dissociation pathways of N2+ in intense femtosecond laser fields
Chen De-Ying, Zhang Sheng, Xia Yuan-Qin. Chin. Phys. B, 2009, 18(7): 3073-3078.
[9] The multielectron dissociative ionization dynamics of N2 molecule in intense femtosecond laser fields with arbitrary polarization
Chen Jian-Xin, Gong Qi-Huang. Chin. Phys. B, 2005, 14(10): 1960-1965.
No Suggested Reading articles found!