Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 083101    DOI: 10.1088/1674-1056/26/8/083101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

A numerical Hartree self-consistent field calculation of an autoionization resonance parameters for a doubly excited 2s2, 3s2, and 4s2 states of He atom with a complex absorbing potential

Tsogbayar Tsednee, Danny L Yeager
Department of Chemistry, Texas A & M University, College Station, TX 77843, USA
Abstract  

The self-consistent Hartree-Fock equation for the He atom is solved using the pseudospectral method. The Feshbach-type autoionization resonance parameters for doubly excited 2s2, 3s2, and 4s2 1S states of He have been determined by adding a complex absorbing potential to the Hamiltonian. The Riss-Meyer iterative and Padé extrapolation methods are applied to obtain reliable values for the autoionization resonance parameters, which are compared to previous results in the literature.

Keywords:  self-consistent field      Hartree-Fock equation      helium autoionization      pseudospectral method     
Received:  03 February 2017      Published:  05 August 2017
PACS:  31.10.+z (Theory of electronic structure, electronic transitions, and chemical binding)  
  31.15.xr (Self-consistent-field methods)  
  32.80.Zb (Autoionization)  
Corresponding Authors:  Tsogbayar Tsednee     E-mail:  tsogbayar.tsednee@tamu.edu
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Tsogbayar Tsednee, Danny L Yeager A numerical Hartree self-consistent field calculation of an autoionization resonance parameters for a doubly excited 2s2, 3s2, and 4s2 states of He atom with a complex absorbing potential 2017 Chin. Phys. B 26 083101

[1] Madden R P and Codling K 1963 Phys. Rev. Lett. 10 516
[2] Shenstone A G 1931 Phys. Rev. 31 1701
[3] Bhatia A K and Temkin A 1975 Phys. Rev. A 11 2018
[4] Bhatia A K and Temkin A 1984 Phys. Rev. A 29 1895
[5] Oza D H 1986 Phys. Rev. A 33 824
[6] Ho Y K 1979 J. Phys. B 12 387
[7] Ho Y K 1980 Phys. Rev. Lett. 79A 44
[8] Ho Y K 1981 Phys. Rev. A 23 2137
[9] Ho Y K 1983 Phys. Rep. 99 1
[10] Ho Y K 1986 Phys. Rev. A 34 4402
[11] Fischer C F and Idrees M 1990 J. Phys. B: At. Mol. Opt. Phys. 23 679
[12] Tang J, Watanabe S and Matsuzawa M 1992 Phys. Rev. A 46 2437
[13] Lindroth E 1994 Phys. Rev. A 49 4473
[14] Bürgers A, Wintgen D and Rost J M 1995 J. Phys. A: Math. Gen. 283163
[15] Zdanska P R and Moiseyev N 2005 J. Chem. Phys. 123 194105
[16] Sajeev Y, Sindelka M and Moiseyev N 2006 Chem. Phys. 329 307
[17] Bravaya K B, Zuev D, Epifanovsky E and Krylov A I 2013 J. Chem.Phys. 138 124106
[18] Liang L and Yeager D L 2014 J. Chem. Phys. 140 094305
[19] Kapralova-Zdanska P R and Smydke J 2013 J. Chem. Phys. 138 024105
[20] Riss U V and Meyer H D 1993 J. Phys. B: At. Mol. Opt. Phys. 26 4503
[21] Lefebvre R, Sindelka M and Moiseyev N 2005 Phys. Rev. A 72 052704
[22] Santra R 2006 Phys. Rev. A 74 034701
[23] Ackad E and Horbatsch M 2007 Phys. Rev. A 76 022503
[24] Durand Ph and Paidarova I 2013 J. Phys. B: At. Mol. Opt. Phys. 46075001
[25] Landau A, Haritan I, Kapralova-Zdanska P R and Moiseyev N 2016 J.Phys. Chem. A 120 3098
[26] Funaro D 1992 Polynomial Apprixamtion of Differential Equations(Berlin: Springer)
[27] Hesthaven J S, Gottlieb S and Gottlieb D 2007 Spectral Methods for Time-Dependent Problems (Cambridge: Cambridge University Press)
[28] Tsogbayar Ts and Horbatsch M 2013 J. Phys. A: Math. Theor. 46085004
[29] Fischer C F 1977 The Hartree-Fock Method for Atoms (New York: Wiley)
[30] Roetti C and Clementi E 1974 J. Chem. Phys. 60 4725
[31] Zou Z and Chu S I 2005 Phys. Rev. A 71 022513
[32] Bhatia A K 2008 Phys. Rev. A 77 052707
[33] Moiseyev N 1998 Phys. Rep. 302 21
[34] Santra R and Cederbaum L S 2002 Phys. Rep. 368 1
[35] Muga J G, Palao J P, Navarro B and Egusquiza I L 2004 Phys. Rep. 395357
[1] Electronic structure from equivalent differential equations of Hartree-Fock equations
Hai Lin(林海). Chin. Phys. B, 2019, 28(8): 087101.
[2] Comparing two iteration algorithms of Broyden electron density mixing through an atomic electronic structure computation
Man-Hong Zhang(张满红). Chin. Phys. B, 2016, 25(5): 053102.
[3] Quantum path control and isolated attosecond pulse generation in the combination of near-infrared and terahertz pulses
Zhong Hui-Ying, Guo Jing, Zhang Hong-Dan, Du Hui, Liu Xue-Shen. Chin. Phys. B, 2015, 24(7): 073202.
[4] Multiple patterns of diblock copolymer confined in irregular geometries with soft surface
Li Ying, Sun Min-Na, Zhang Jin-Jun, Pan Jun-Xing, Guo Yu-Qi, Wang Bao-Feng, Wu Hai-Shun. Chin. Phys. B, 2015, 24(12): 126403.
[5] Application of self-consistent field theory to self-assembled bilayer membranes
Zhang Ping-Wen, Shi An-Chang. Chin. Phys. B, 2015, 24(12): 128707.
[6] Conservative method for simulation of a high-order nonlinear Schrödinger equation with a trapped term
Cai Jia-Xiang, Bai Chuan-Zhi, Qin Zhi-Lin. Chin. Phys. B, 2015, 24(10): 100203.
[7] Multi-symplectic method for the coupled Schrödinger-KdV equations
Zhang Hong, Song Song-He, Zhou Wei-En, Chen Xu-Dong. Chin. Phys. B, 2014, 23(8): 080204.
[8] Average vector field methods for the coupled Schrödinger–KdV equations
Zhang Hong, Song Song-He, Chen Xu-Dong, Zhou Wei-En. Chin. Phys. B, 2014, 23(7): 070208.
[9] Self-consistent field theory of adsorption of flexible polyelectrolytes onto an oppositely charged sphere
Tong Zhao-Yang, Zhu Yue-Jin, Tong Chao-Hui. Chin. Phys. B, 2014, 23(3): 038202.
[10] A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation
Lv Zhong-Quan, Zhang Lu-Ming, Wang Yu-Shun. Chin. Phys. B, 2014, 23(12): 120203.
[11] A conservative Fourier pseudospectral algorithm for a coupled nonlinear Schrödinger system
Cai Jia-Xiang, Wang Yu-Shun. Chin. Phys. B, 2013, 22(6): 060207.
[12] Multisymplectic implicit and explicit methods for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang, Yang Bin, Liang Hua. Chin. Phys. B, 2013, 22(3): 030209.
[13] Explicit multi-symplectic method for the Zakharov–Kuznetsov equation
Qian Xu, Song Song-He, Gao Er, Li Wei-Bin. Chin. Phys. B, 2012, 21(7): 070206.
[14] Cylindrical-confinement-induced phase behaviours of diblock copolymer melts
Liu Mei-Jiao, Li Shi-Ben, Zhang Lin-Xi, Wang Xiang-Hong. Chin. Phys. B, 2010, 19(2): 028101.
[15] Pair interaction of bilayer-coated nanoscopic particles
Zhang Qi-Yi. Chin. Phys. B, 2009, 18(2): 658-663.
No Suggested Reading articles found!