Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 080202    DOI: 10.1088/1674-1056/26/8/080202
GENERAL Prev   Next  

Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method

Melis Zorsahin Gorgulu1, Idris Dag2, Dursun Irk1
1 Department of Mathematics-Computer, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey;
2 Department of Computer Engineering, Eskisehir Osmangazi University, 26480, Eskisehir, Turkey
Abstract  

In this paper, an approximate function for the Galerkin method is composed using the combination of the exponential B-spline functions. Regularized long wave equation (RLW) is integrated fully by using an exponential B-spline Galerkin method in space together with Crank-Nicolson method in time. Three numerical examples related to propagation of single solitary wave, interaction of two solitary waves and wave generation are employed to illustrate the accuracy and the efficiency of the method. Obtained results are compared with some early studies.

Keywords:  solitary waves      exponential B-spline      Galerkin method      RLW equation  
Received:  13 January 2017      Revised:  20 March 2017      Published:  05 August 2017
PACS:  02.30.Jr (Partial differential equations)  
  02.70.Dh (Finite-element and Galerkin methods)  
  47.35.Fg (Solitary waves)  
  04.30.Nk (Wave propagation and interactions)  
Fund: 

Project supported by the Scientific and Technological Research Council of Turkey (Grant No. 113F394).

Corresponding Authors:  Melis Zorsahin Gorgulu     E-mail:  mzorsahin@ogu.edu.tr
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Melis Zorsahin Gorgulu, Idris Dag, Dursun Irk Simulations of solitary waves of RLW equation by exponential B-spline Galerkin method 2017 Chin. Phys. B 26 080202

[1] Peregrine D H 1966 J. Fluid. Mech. 25 321
[2] McCartin B J 1991 J. Approx. Theory 66 1
[3] Sakai M and Usmani R A 1989 Numer. Math. 55 493
[4] Radunovic D 2008 Numer. Algor. 47 191
[5] Rao S C S and Kumar M 2008 Appl. Numer. Math. 59 1572
[6] Mohammadi R 2013 Appl. Math. 4 933
[7] Dag I and Ersoy O 2015 AIP Conf. Proc. 1648 370008
[8] Dag I and Ersoy O 2016 Chaos, Solitons and Fractals 86 101
[9] Mohammadi R 2015 Chin. Phys. B 24 050206
[10] Zorsahin Gorgulu M, Dag I and Irk D 2016 J. Phys.: Conf. Ser. 766 012031
[11] Jain P J and Iskandar L 1979 Comput. Meth. Appl. Mech. Eng. 20 195
[12] Jain P C, Shankar R and Singh T V 1993 Commum. Numer. Methods Eng. 9 579-586
[13] Bhardwaj D and Shankar R 2000 Comput. Math. Appl. 40 1397
[14] Kutluay S and Esen A 2006 Math. Probl. Eng. 2006 85743
[15] Alexander M E and Morris J L 1979 J. Comput. Phys. 30 428
[16] Sanz-Serna J M and Petrov I C 1981 J. Comput. Phys. 39 94
[17] Luo Z and Liu R 1998 SIAM. J. Numer. Anal. 36 89
[18] Dag I, Saka B and Irk D 2004 Appl. Math. Comput. 159 373
[19] Saka B and Dag I 2008 Commun. Numer. Method En. 24 1339
[20] Saka B, Dag I and Dogan A 2004 Int. J. Comput. Math. 81 727
[21] Dag I and Ozer M N 2001 Appl. Math. Model. 25 221
[22] Dag I, Saka B and Irk D 2006 Comput. Appl. Math. 190 532
[23] Dag I, Dogan A and Saka B 2003 Int. J. Comput. Math. 80 743
[24] Avilez-Valente P and Seabra-Santos F J 2004 Int. J. Comput. Math. 34 256
[25] Mei L and Chen Y 2012 Comput. Phys. Commun. 183 1609
[26] Guo B and Cao W 1988 J. Comput. Phys. 74 110
[27] Sloan D M 1991 J. Comput. Appl. Math. 36 159
[28] Ben-Yu G and Manoranjan V S 1985 IMA J. Numer. Anal. 5 228
[29] Benjamin T B, Bona J L and Mahony J J 1972 Phil. Trans. Roy. Soc. 272 47
[30] Olver P J 1979 Math. Proc. Camb. Phil. Soc. 85 143
[31] Gardner L R T and Dag I 1995 Il Nuovo Cimento B 110 1487
[32] Chang Q, Wang G and Guo B 1991 J. Comput. Phys. 93 360
[1] Head-on collision between two solitary waves in a one-dimensional bead chain
Fu-Gang Wang(王扶刚), Yang-Yang Yang(杨阳阳), Juan-Fang Han(韩娟芳), Wen-Shan Duan(段文山). Chin. Phys. B, 2018, 27(4): 044501.
[2] Nucleus-acoustic solitary waves in self-gravitating degenerate quantum plasmas
D M S Zaman, M Amina, P R Dip, A A Mamun. Chin. Phys. B, 2018, 27(4): 040402.
[3] Solitary wave for a nonintegrable discrete nonlinear Schrödinger equation in nonlinear optical waveguide arrays
Li-Yuan Ma(马立媛), Jia-Liang Ji(季佳梁), Zong-Wei Xu(徐宗玮), Zuo-Nong Zhu(朱佐农). Chin. Phys. B, 2018, 27(3): 030201.
[4] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[5] Quasi-periodic solutions and asymptotic properties for the nonlocal Boussinesq equation
Zhen Wang(王振), Yupeng Qin(秦玉鹏), Li Zou(邹丽). Chin. Phys. B, 2017, 26(5): 050504.
[6] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[7] (2+1)-dimensional dissipation nonlinear Schrödinger equation for envelope Rossby solitary waves and chirp effect
Jin-Yuan Li(李近元), Nian-Qiao Fang(方念乔), Ji Zhang(张吉), Yu-Long Xue(薛玉龙), Xue-Mu Wang(王雪木), Xiao-Bo Yuan(袁晓博). Chin. Phys. B, 2016, 25(4): 040202.
[8] A new model for algebraic Rossby solitary waves in rotation fluid and its solution
Chen Yao-Deng, Yang Hong-Wei, Gao Yu-Fang, Yin Bao-Shu, Feng Xing-Ru. Chin. Phys. B, 2015, 24(9): 090205.
[9] Exponential B-spline collocation method for numerical solution of the generalized regularized long wave equation
Reza Mohammadi. Chin. Phys. B, 2015, 24(5): 050206.
[10] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min, Liu Chao, Bai Fu-Nong, Peng Miao-Juan. Chin. Phys. B, 2015, 24(10): 100202.
[11] Complex dynamical behaviors of compact solitary waves in the perturbed mKdV equation
Yin Jiu-Li, Xing Qian-Qian, Tian Li-Xin. Chin. Phys. B, 2014, 23(8): 080201.
[12] Exact solutions of the nonlinear differential—difference equations associated with the nonlinear electrical transmission line through a variable-coefficient discrete (G'/G)-expansion method
Saïdou Abdoulkary, Alidou Mohamadou, Ousmanou Dafounansou, Serge Yamigno Doka. Chin. Phys. B, 2014, 23(12): 120506.
[13] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang, Dai Bao-Dong, Li Zhen-Feng. Chin. Phys. B, 2013, 22(8): 080203.
[14] An improved element-free Galerkin method for solving generalized fifth-order Korteweg-de Vries equation
Feng Zhao, Wang Xiao-Dong, Ouyang Jie. Chin. Phys. B, 2013, 22(7): 074704.
[15] New exact solutions of (3+1)-dimensional Jimbo-Miwa system
Chen Yuan-Ming, Ma Song-Hua, Ma Zheng-Yi. Chin. Phys. B, 2013, 22(5): 050510.
No Suggested Reading articles found!