Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077201    DOI: 10.1088/1674-1056/26/7/077201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field

Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾)
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631, China
Abstract  

By solving the Bogoliubov–de Gennes equation, the influence of the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field on the spin-polarized coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions is investigated based on the Blonder–Tinkham–Klapwijk theory. The coherence effect is characterized by the strong oscillations of the charge conductance as a function of the bias voltage or the thickness of the semiconductor nanowire, resulting from the quantum interference of incoming and outgoing quasiparticles in the nanowire. Such oscillations can be effectively modulated by varying the strength of the Rashba spin–orbit coupling, the thickness of the nanowire, or the strength of the external magnetic field. It is also shown that two different types of zero-bias conductance peaks may occur under some particular conditions, which have some different characteristics and may be due to different mechanisms.

Keywords:  Rashba spin–      orbit coupling      induced superconducting pair potential      coherent charge transport      zero-bias conductance peaks  
Received:  20 February 2017      Revised:  17 April 2017      Published:  05 July 2017
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
Corresponding Authors:  Liang-Bin Hu     E-mail:  lbhu@126.com

Cite this article: 

Li-Jie Huang(黄立捷), Lian Liu(刘恋), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾) Coherent charge transport in ferromagnet/semiconductor nanowire/ferromagnet double barrier junctions with the interplay of Rashba spin–orbit coupling, induced superconducting pair potential, and external magnetic field 2017 Chin. Phys. B 26 077201

[1] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[2] Wolf S A 2001 Science 294 1488
[3] Zutic I, Fabian J and Das Sarma S 2004 Rev. Mod. Phys. 76 323
[4] Murakami S, Naogaosa N and Zhang S C 2003 Science 301 1348
[5] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[6] Sinova J, Culcer D, Niu Q, Sinitsyn N A, Jungwirth T and MacDonald A H 2004 Phys. Rev. Lett. 92 126603
[7] Wunderlich J, Kastner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 94 047204
[8] Bauer G E W, Tserkovnyak Y, Brataas A, Ren J, Xia K, Zwierzycki M and Kelly P J 2005 Phys. Rev. B 72 155304
[9] Zyuzin V A, Silvestrov P G and Mishchenko E G 2007 Phys. Rev. Lett. 99 106601
[10] Bokes P, Corsetti F and Godby R W 2008 Phys. Rev. Lett. 101 046402
[11] Koralek J D, Weber C P, Orenstein J, Bernevig B A, Zhang S C, Mack S and Awschalom D D 2009 Nature 458 610
[12] Silvestrov P G, Zyuzin V A and Mishchenko E G 2009 Phys. Rev. Lett. 102 196802
[13] Rech J, Micklitz T and Matveev K A 2009 Phys. Rev. Lett. 102 116402
[14] Koo H C, Kwon J H, Eom J, Chang J, Han S H and Johnson M 2009 Science 325 1515
[15] Gelabert M M, Serra L, Sanchez D and Lopez R 2010 Phys. Rev. B 81 165317
[16] Zainuddin A N M, Hong S, Siddiqui L and Datta S 2011 Phys. Rev. B 84 165306
[17] Duckheim M, Loss D, Scheid M, Richter K, Adagideli I and Jacquod P 2010 Phys. Rev. B 81 085303
[18] Kunihashi Y, Kohda M and Nitta J 2012 Phys. Rev. B 85 035321
[19] Walser M P, Reichl C, Wegscheider W and Salis G 2012 Nat. Phys. 8 757
[20] Xu L, Li X Q and Sun Q F 2014 Scientific Report 4 7527
[21] Wu W, Rachel S, Liu W M and Hur K L 2012 Phys. Rev. B 85 205102
[22] Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
[23] He P B and Liu W M 2005 Phys. Rev. B 72 064410
[24] Yokoyama T, Tanaka Y and Inoue J 2006 Phys. Rev. B 74 035318
[25] Linder J and Yokoyama T 2011 Phys. Rev. Lett. 106 237201
[26] Lv B, Zhang C and Ma Z S 2012 Phys. Rev. Lett. 108 077002
[27] Xu L T and Li X Q 2014 Europhys. Lett. 108 67013
[28] Hao X J, Li H O, Tu T, Zhou C, Cao G, Guo G C, Guo G P, Fung W Y, Ji Z Q and Lu W 2011 Phys. Rev. B 84 195448
[29] Takei S and Galitski V 2012 Phys. Rev. B 86 054521
[30] Liu N Q, Huang L J, Wang R Q and Hu L B 2016 Chin. Phys. B 25 027201
[31] Sau J D, Lutchyn R M, Tewari S and Das Sarma S 2010 Phys. Rev. Lett. 104 040502
[32] Lutchyn R M, Sau J D and Das Sarma S 2010 Phys. Rev. Lett. 105 077001
[33] Alicea J. 2010 Phys. Rev. B 81 125318
[34] Sau J D, Tewari S, Lutchyn R M, Stanescu T D and Das Sarma S 2010 Phys. Rev. B 82 214509
[35] Y Oreg, G Refael and F von Oppen 2010 Phys. Rev. Lett. 105 177002
[36] Yamakage A, Tanaka Y and Nagaosa N 2012 Phys. Rev. Lett. 108 087003
[37] Bergeret F S and Tokatly I V 2014 Phys. Rev. B 89 134517
[38] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[39] Deng M T, Yu C L, Huang G Y, Larsson M, Caroff P and Xu H Q 2012 Nano Lett. 12 6414
[40] Rokhinson L P, Liu X and Furdyna J K 2012 Nat. Phys. 8 795
[41] Finck A D K, Van Harlingen D J, Mohseni P K, Jung K and Li X 2013 Phys. Rev. Lett. 110 126406
[42] Churchill H O H, Fatemi V, Grove-Rasmussen K, Deng M T, Caroff P, Xu H Q and Marcus C M 2013 Phys. Rev. B 87 241401
[43] Chang W, Albrecht S M, Jespersen T S, Kuemmeth F, Krogstrup P, Nygrd J and Marcus C M 2015 Nat. Nanotech. 10 232
[44] Li S, Huang G Y, Guo J K, Kang N, Caroff P and Xu H Q 2017 Chin. Phys. B 26 027305
[45] Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
[46] Lee E J H, Jiang X C, Houzet M, Aguado R, Lieber C M and Franceschi S D 2013 Nat. Nanotech. 9 79
[47] Liu J, Potter A C, Law K T and Lee P A 2012 Phys. Rev. Lett. 109 267002
[48] Liu X, Sau J D and Das Sarma S 2015 Phys. Rev. B 92 014513
[49] Das Sarma S, Nag A and Sau J D 2016 Phys. Rev. B 94 035143
[50] Sharma G and Tewari S 2016 Phys. Rev. B 93 195161
[1] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[2] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[3] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[4] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[5] Ferromagnetic transition of a spin–orbit coupled dipolar Fermi gas at finite temperature
Xue-Jing Feng(冯雪景) and Lan Yin(尹澜). Chin. Phys. B, 2020, 29(11): 110306.
[6] Ground-state phases and spin textures of spin–orbit-coupled dipolar Bose–Einstein condensates in a rotating toroidal trap
Qing-Bo Wang(王庆波), Hui Yang(杨慧), Ning Su(苏宁), and Ling-Hua Wen(文灵华). Chin. Phys. B, 2020, 29(11): 116701.
[7] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国)†, Yue-Qing Li(李月晴), and Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[8] Landau-like quantized levels of neutral atom induced by a dark-soliton shaped electric field
Yueming Wang(王月明), Zhen Jin(靳祯). Chin. Phys. B, 2020, 29(1): 010303.
[9] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[10] Global phase diagram of a spin-orbit-coupled Kondo lattice model on the honeycomb lattice
Xin Li(李欣), Rong Yu(俞榕), Qimiao Si. Chin. Phys. B, 2019, 28(7): 077102.
[11] Spatiotemporal Bloch states of a spin-orbit coupled Bose-Einstein condensate in an optical lattice
Ya-Wen Wei(魏娅雯), Chao Kong(孔超), Wen-Hua Hai(海文华). Chin. Phys. B, 2019, 28(5): 056701.
[12] Particle-hole fluctuations and possible superconductivity in doped α-RuCl3
Bin-Bin Wang(王斌斌), Wei Wang(王巍), Shun-Li Yu(于顺利), Jian-Xin Li(李建新). Chin. Phys. B, 2019, 28(5): 057402.
[13] Low-lying electronic states of aluminum monoiodide
Xiang Yuan(袁翔), Shuang Yin(阴爽), Yi Lian(连艺), Pei-Yuan Yan(颜培源), Hai-Feng Xu(徐海峰), Bing Yan(闫冰). Chin. Phys. B, 2019, 28(4): 043101.
[14] Graphene-like Be3X2 (X=C, Si, Ge, Sn): A new family of two-dimensional topological insulators
Lingling Song(宋玲玲), Lizhi Zhang(张礼智), Yurou Guan(官雨柔), Jianchen Lu(卢建臣), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2019, 28(3): 037101.
[15] A review of current research on spin currents and spin-orbit torques
Xiao-Yu Feng(冯晓玉), Qi-Han Zhang(张琪涵), Han-Wen Zhang(张瀚文), Yi Zhang(张祎), Rui Zhong(钟瑞), Bo-Wen Lu(卢博文), Jiang-Wei Cao(曹江伟), Xiao-Long Fan(范小龙). Chin. Phys. B, 2019, 28(10): 107105.
No Suggested Reading articles found!