Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 074206    DOI: 10.1088/1674-1056/26/7/074206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Quantum interference between heralded single photon stateand coherent state

Lei Yang(杨磊)1, Xiaoxin Ma(马晓欣)2, Xiaoying Li(李小英)1
1 College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Key Laboratory of Opto-Electronics Information Technology, Ministry of Education, Tianjin 300072, China;
2 High School Affiliated to Beijing Institute of Technology, Beijing 100089, China
Abstract  Balanced homodyne detection has been introduced as a reliable technique of reconstructing the quantum state of a single photon Fock state, which is based on coupling the single photon state and a strong coherent local oscillator in a beam splitter and detecting the field quadrature at the output ports separately. The main challenge associated with a tomographic characterization of the single photon state is mode matching between the single photon state and the local oscillator. Utilizing the heralded single photon generated by the spontaneous parametric process, the multi-mode theoretical model of quantum interference between the single photon state and the coherent state in the fiber beam splitter is established. Moreover, the analytical expressions of the temporal-mode matching coefficient and interference visibility and relationship between the two parameters are shown. In the experimental scheme, the interference visibility under various temporal-mode matching coefficients is demonstrated, which is almost accordant with the theoretical value. Our work explores the principle of temporal-mode matching between the single photon state and the coherent photon state, originated from a local oscillator, and could provide guidance for designing the high-performance balanced homodyne detection system.
Keywords:  heralded single photon state      coherent state      quantum interference      balanced homodyne detection     
Received:  18 February 2017      Published:  05 July 2017
PACS:  42.50.-p (Quantum optics)  
  03.67.-a (Quantum information)  
  42.65.-k (Nonlinear optics)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Special Fund for Major Research Instrument Development of China (Grant No.11527808),the Young Scientists Fund of the National Natural Science Foundation of China (Grant No.11504262),the National Basic Research Program of China (Grant No.2014CB340103),the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20120032110055),and the Tianjin Research Program of Application Foundation and Advanced Technology,China (Grant No.14JCQNJC02300).
Corresponding Authors:  Xiaoying Li     E-mail:  xiaoyingli@tju.edu.cn

Cite this article: 

Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英) Quantum interference between heralded single photon stateand coherent state 2017 Chin. Phys. B 26 074206

[1] Stucki D, Gisin N, Guinnard O, Ribordy G and Zbinden H 2002 New J. Phys. 4 41
[2] Mi J L, Wang F Q, Lin Q Q and Liang R S 2008 Chin. Phys. B 17 1178
[3] Chen J J, Han Z F, Zhao Y B, Gui Y Z and Guo G C 2006 Physics 35 785
[4] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[5] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[6] Hong C K and Mandel L 1986 Phys. Rev. Lett. 56 58
[7] Lounis B and Orrit M 2005 Rep. Prog. Phys. 68 1129
[8] Pittman T B, Jacobs B C and Franson J D 2005 Opt. Commun. 246 545
[9] Yang L, Ma X X, Guo X S, Cui L and Li X Y 2011 Phys. Rev. A 83 053843
[10] Lvovsky A I, Hansen H, Aichele T, Benson O, Mlynek J and Schiller S 2001 Phys. Rev. Lett. 87 050402
[11] Burch E T, Henelsmith C, Larson W and Beck M 2015 Phys. Rev. A 92 032328
[12] Bimbard E, Boddeda R, Vitrant N, Grankin A, Parigi V, Stanojevic J, Ourjoumtsev A and Grangier P 2014 Phys. Rev. Lett. 112 033601
[13] Wang J C, Liu S T and Wang Y Y 2010 Chin. Phys. B 19 074206
[14] Shapiro J H 1985 IEEE J. Quantum Elect. QE-21 237
[15] Zavatta A, Bellini M, Ramazza P L, Marin F and Arecchi F T 2002 J. Opt. Soc. Am. B 19 1189
[16] Leonhardt U 1995 Phys. Rev. Lett. 74 4101
[17] Lvovsky A I and Raymer M G 2009 Rev. Mod. Phys. 81 299
[18] Banaszek K and Wodkiewicz K 1997 Phys. Rev. A 55 3117
[19] Ma X X, Cui L and Li X Y 2015 J. Opt. Soc. Am. B 32 946
[20] Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
[21] Ma X X, Li X Y, Cui L, Guo X S and Yang L 2011 Phys. Rev. A 84 023829
[22] Caves C M 1982 Phys. Rev. D 26 1817
[23] Glauber R J 1963 Phys. Rev. 130 2529
[24] Ou Z Y, Rhee J K and Wang L J 1999 Phys. Rev. A 60 593
[25] Yang L, Li X Y and Wang B S 2008 Acta Phys. Sin. 57 4933 (in Chinese)
[26] Jian Y, Wu E, Wu G and Zeng H P 2010 IEEE Photon. Tech. Lett. 22 173
[27] Natarajan C M, Tanner and Hadfield R H 2012 Supercond. Sci. Tech. 25 63001
[1] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[2] Finite-dimensional pair coherent state engendered via the nonlinear Bose operator realization and its Wigner phase-space distributions
Jianming Liu(刘建明), Xiangguo Meng(孟祥国). Chin. Phys. B, 2019, 28(12): 124206.
[3] Time evolution of angular momentum coherent state derived by virtue of entangled state representation and a new binomial theorem
Ji-Suo Wang(王继锁), Xiang-Guo Meng(孟祥国), Hong-Yi Fan(范洪义). Chin. Phys. B, 2019, 28(10): 100301.
[4] Entropy of field interacting with two two-qubit atoms
Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2018, 27(9): 090303.
[5] Construction of two-qubit logical gates by transmon qubits in a three-dimensional cavity
Han Cai(蔡涵), Qi-Chun Liu(刘其春), Chang-Hao Zhao(赵昌昊), Ying-Shan Zhang(张颖珊), Jian-She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2018, 27(8): 084207.
[6] Optimization of pick-up coils for weakly damped SQUID gradiometers
Kang Yang(杨康), Jialei Wang(王佳磊), Xiangyan Kong(孔祥燕), Ruihu Yang(杨瑞虎), Hua Chen(陈桦). Chin. Phys. B, 2018, 27(5): 050701.
[7] Performance study of aluminum shielded room for ultra-low-field magnetic resonance imaging based on SQUID: Simulations and experiments
Bo Li(李波), Hui Dong(董慧), Xiao-Lei Huang(黄小磊), Yang Qiu(邱阳), Quan Tao(陶泉), Jian-Ming Zhu(朱建明). Chin. Phys. B, 2018, 27(2): 020701.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Extended Bell inequality and maximum violation
Yan Gu(古燕), Haifeng Zhang(张海峰), Zhigang Song(宋志刚), Jiuqing Liang(梁九卿), Lianfu Wei(韦联福). Chin. Phys. B, 2018, 27(10): 100303.
[10] Modulation depth of series SQUIDs modified by Josephson junction area
Jie Liu(刘杰), He Gao(高鹤), Gang Li(李刚), Zheng Wei Li(李正伟), Kamal Ahmada, Zhang Ying Shan(张颖珊), Jian She Liu(刘建设), Wei Chen(陈炜). Chin. Phys. B, 2017, 26(9): 098501.
[11] Macroscopic resonant tunneling in an rf-SQUID flux qubit under a single-cycle sinusoidal driving
Jianxin Shi(史建新), Weiwei Xu(许伟伟), Guozhu Sun(孙国柱), Jian Chen(陈健), Lin Kang(康琳), Peiheng Wu(吴培亨). Chin. Phys. B, 2017, 26(4): 047402.
[12] Ballistic transport and quantum interference in InSb nanowire devices
Sen Li(李森), Guang-Yao Huang(黄光耀), Jing-Kun Guo(郭景琨), Ning Kang(康宁), Philippe Caroff, Hong-Qi Xu(徐洪起). Chin. Phys. B, 2017, 26(2): 027305.
[13] Quantum statistical properties of photon-added spin coherent states
G Honarasa. Chin. Phys. B, 2017, 26(11): 114202.
[14] Quantum dual signature scheme based on coherent states with entanglement swapping
Jia-Li Liu(刘佳丽), Rong-Hua Shi(施荣华), Jin-Jing Shi(石金晶), Ge-Li Lv(吕格莉), Ying Guo(郭迎). Chin. Phys. B, 2016, 25(8): 080306.
[15] Gazeau-Klauder coherent states examined from the viewpoint of diagonal ordering operation technique
Dušan Popov, Romeo Negrea, Miodrag Popov. Chin. Phys. B, 2016, 25(7): 070301.
No Suggested Reading articles found!