Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 073202    DOI: 10.1088/1674-1056/26/7/073202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core

Sabri Bouchoucha1, Kamel Alioua2, Moncef Bouledroua3
1 Physics Department, Badji Mokhtar University, B. P. 12, Annaba 23000, Algeria;
2 Laboratoire de Physique de la Matiére et du Rayonnement, Chérif Messaidia University, B. P. 1553, Souk-Ahras 41000, Algeria;
3 Laboratoire de Physique des Rayonnements, Badji Mokhtar University, B. P. 12, Annaba 23000, Algeria
Abstract  

Full quantum calculations are performed to investigate the broadening profiles of the atomic lithium Li(2s-2p) resonance line induced by interactions with ground Ne(2s22p6) perturbers in the spectral wings and core. The X2Σ+, A2Π, and B2Σ+ potential-energy curves of the two first low lying LiNe molecular states, as well as the corresponding transition dipole moments, are determined with ab initio methods based on the SA-CASSCF-MRCI calculations. The emission and absorption coefficients in the wavelength range 550–800 nm and the line-core width and shift are investigated theoretically for temperatures ranging from 130 K to 3000 K. Their temperature dependence is analyzed, and the obtained results are compared with the previous experimental measurements and theoretical works.

Keywords:  pressure broadening      emission and absorption coefficients      linewidth      lineshift  
Received:  20 February 2017      Revised:  31 March 2017      Published:  05 July 2017
PACS:  32.80.-t (Photoionization and excitation)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  32.70.Jz (Line shapes, widths, and shifts)  
Corresponding Authors:  Sabri Bouchoucha     E-mail:  bsa_ur@yahoo.fr

Cite this article: 

Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core 2017 Chin. Phys. B 26 073202

[1] Burrows A 2005 Nature 433 261
[2] Sharp C M and Burrows A 2007 ApJS 168 140
[3] Burgasser A J, Cushing M C, Kirkpatrick J D, et al. 2011 ApJ 735 116
[4] Leggett S K, Saumon D, Marley M S, et al. 2012 ApJ 748 74
[5] Allard N F 2014 Adv. Space Res. 54 1285
[6] Allard N F, Nakayama A, Stienkemeier F, Kielkopf J F, Guillon G and Viel A 2014 Adv. Space Res. 54 1290
[7] Blank L and Weeks D E 2014 Phys. Rev. A 90 022510
[8] Zhu C, Babb J F and Dalgarno A 2005 Phys. Rev. A 71 052710
[9] Zhu C, Babb J F and Dalgarno A 2006 Phys. Rev. A 73 012506
[10] Alioua K and Bouledroua M 2006 Phys. Rev. A 74 032711
[11] Mullamphy D F T, Peach G, Venturi V, Whittingham I B and Gibson S G 2007 J. Phys. B 40 1141
[12] Alioua K, Bouledroua M, Allouche A R and Aubert-Frècon M 2008 J. Phys. B 41 175102
[13] Boutarfa H, Alioua K, Bouledroua M, Allouche A R and Aubert-Frècon M 2012 Phys. Rev. A 86 052504
[14] Bouhadjar F, Alioua K, Bouazza M T and Bouledroua M 2014 J. Phys. B 47 185201
[15] Scheps R, Ottinger C, York G and Gallagher A 1975 J. Chem. Phy. 63 2581
[16] Havey M D, Frolking S E, Wright J J and Balling L C 1981 Phys. Rev. A 24 3105
[17] Balling L C, Wright J J and Havey M D 1982 Phys. Rev. 26 1426
[18] Behmenburg W, Kaiser A, Rebentrost F, Jungen M, Smith M, Luo M and Peach G 1998 J. Phys. B 31 689
[19] Rosenberry M A and Stewart B 2011 J. Phys. B 44 055207
[20] Grosser J, Hoffmann O, Rebentrost F and Tiemann E 2014 J. Phys. B 47 165102
[21] Hager G D, Lott G E, Archibald A J, Blank L, Weeks D E and Perram G P 2014 J. Quant. Spectrosc. Radiat. Transfer 147 261
[22] Mason C R 1991 (PhD. Thesis) (London:University College of London)
[23] Havey M D Private Communication to Mason C R [22]
[24] Herman P S and Sando K M 1978 J. Chem. Phys. 68 1153
[25] Sando K M 1971 Mol. Phys. 21 439
[26] Woerdman J P 1985 J. Phys. B 18 4205
[27] Baranger M 1958 Phys. Rev. 111 481
[28] Szudy J and Baylis W E 1975 J. Quant. Spectrosc. Radiat. Transfer 15 641
[29] Allard N F and Kielkopf J F 1982 Rev. Mod. Phys. 54 1103
[30] Reggami L, Bouledroua M, Allouche A R and Aubert-Frècon M 2009 J. Quant. Spectrosc. Radiat. Transfer 110 72
[31] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[32] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[33] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[34] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[35] Woon D E and Dunning Jr T H 1994 J. Chem. Phys. 100 2975
[36] Davidson E R and Silver D W 1977 Chem. Phys. Lett. 53 403
[37] Boys S F and Bernardi F 1970 Mol. Phys. 19 553
[38] Werner H J, Knowles P J and Lind R 2008 Package of ab initio programs Molpro version 2008.1
[39] Mitroy J and Zhang J Y 2007 Phys. Rev. A 76 032706
[40] Dehmer P and Wharton L 1972 J. Chem. Phys. 57 4821
[41] Kerkines I S K and Mavridis A 2001 J. Phys. Chem. A 105 1983
[42] Lee C J and Havey M D 1991 Phys. Rev. A 43 6066
[43] Czuchaj E, Rebentrost F, Stoll H and Preuss H 1989 Chem. Phys. 136 79
[44] Chu X and Dalgarno A 2002 Phys. Rev. A 66 024701
[45] Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1987 Numerical Recipes. The Art of Scientific Computing (New York:Cambridge University Press)
[46] Numerov B 1933 Publ. Observatoire Central Astrophys. Russ. 2 188
[47] Mott N F and Massey H S W 1965 The Theory of Atomic Collisions (Oxford:Oxford University Press)
[48] Gallagher A 1975 Phys. Rev. A 12 133
[49] Harris M, Lwin N and McCartan D G 1982 J. Phys. B 15 L831
[50] Kielkopf J F 1976 J. Phys. B 9 L547
[51] Lwin N, McCartan D G and Lewis E L 1977 ApJ 213 599
[1] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[2] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[3] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[4] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[5] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[6] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[7] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[8] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[9] Cavity linewidth narrowing with dark-state polaritons
Gong-Wei Lin(林功伟), Jie Yang(杨洁), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2016, 25(1): 014201.
[10] Optically pumped quantum MxMR magnetometer with high oscillating magnetic field
Ding Zhi-Chao, Yuan Jie, Wang Zhi-Guo, Yang Kai-Yong, Luo Hui. Chin. Phys. B, 2015, 24(8): 083202.
[11] Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb
Fang Su, Jiang Yan-Yi, Chen Hai-Qin, Yao Yuan, Bi Zhi-Yi, Ma Long-Sheng. Chin. Phys. B, 2015, 24(7): 074202.
[12] Influence of laser linewidth on performance of Brillouin optical time domain reflectometry
Hao Yun-Qi, Ye Qing, Pan Zheng-Qing, Cai Hai-Wen, Qu Rong-Hui. Chin. Phys. B, 2013, 22(7): 074214.
[13] Linewidth of electromagnetically induced transparency under motional averaging in coated vapor cell
Xu Zhi-Xiang, Qu Wei-Zhi, Gao Ran, Hu Xin-Hua, Xiao Yan-Hong. Chin. Phys. B, 2013, 22(3): 033202.
[14] Observation of linewidth narrowing due to a spontaneously generated coherence effect
Tian Si-Cong, Wang Chun-Liang, Kang Zhi-Hui, Yang Xiu-Bin, Wan Ren-Gang, Zhang Xiao-Jun, Zhang Hang, Jiang Yun, Cui Hai-Ning, Gao Jin-Yue. Chin. Phys. B, 2012, 21(6): 064206.
[15] Absorption and dispersion control in a five-level M-type atomic system
Yang Hong, Yan Dong, Zhang Mei, Fang Bo, Zhang Yan, Wu Jin-Hui. Chin. Phys. B, 2012, 21(11): 114207.
No Suggested Reading articles found!