Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 073202    DOI: 10.1088/1674-1056/26/7/073202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core

Sabri Bouchoucha1, Kamel Alioua2, Moncef Bouledroua3
1 Physics Department, Badji Mokhtar University, B. P. 12, Annaba 23000, Algeria;
2 Laboratoire de Physique de la Matiére et du Rayonnement, Chérif Messaidia University, B. P. 1553, Souk-Ahras 41000, Algeria;
3 Laboratoire de Physique des Rayonnements, Badji Mokhtar University, B. P. 12, Annaba 23000, Algeria
Abstract  

Full quantum calculations are performed to investigate the broadening profiles of the atomic lithium Li(2s-2p) resonance line induced by interactions with ground Ne(2s22p6) perturbers in the spectral wings and core. The X2Σ+, A2Π, and B2Σ+ potential-energy curves of the two first low lying LiNe molecular states, as well as the corresponding transition dipole moments, are determined with ab initio methods based on the SA-CASSCF-MRCI calculations. The emission and absorption coefficients in the wavelength range 550–800 nm and the line-core width and shift are investigated theoretically for temperatures ranging from 130 K to 3000 K. Their temperature dependence is analyzed, and the obtained results are compared with the previous experimental measurements and theoretical works.

Keywords:  pressure broadening      emission and absorption coefficients      linewidth      lineshift  
Received:  20 February 2017      Revised:  31 March 2017      Accepted manuscript online: 
PACS:  32.80.-t (Photoionization and excitation)  
  31.50.Bc (Potential energy surfaces for ground electronic states)  
  31.50.Df (Potential energy surfaces for excited electronic states)  
  32.70.Jz (Line shapes, widths, and shifts)  
Corresponding Authors:  Sabri Bouchoucha     E-mail:  bsa_ur@yahoo.fr

Cite this article: 

Sabri Bouchoucha, Kamel Alioua, Moncef Bouledroua Pressure-broadened atomic Li(2s-2p) line perturbed by ground neon atoms in the spectral wings and core 2017 Chin. Phys. B 26 073202

[1] Burrows A 2005 Nature 433 261
[2] Sharp C M and Burrows A 2007 ApJS 168 140
[3] Burgasser A J, Cushing M C, Kirkpatrick J D, et al. 2011 ApJ 735 116
[4] Leggett S K, Saumon D, Marley M S, et al. 2012 ApJ 748 74
[5] Allard N F 2014 Adv. Space Res. 54 1285
[6] Allard N F, Nakayama A, Stienkemeier F, Kielkopf J F, Guillon G and Viel A 2014 Adv. Space Res. 54 1290
[7] Blank L and Weeks D E 2014 Phys. Rev. A 90 022510
[8] Zhu C, Babb J F and Dalgarno A 2005 Phys. Rev. A 71 052710
[9] Zhu C, Babb J F and Dalgarno A 2006 Phys. Rev. A 73 012506
[10] Alioua K and Bouledroua M 2006 Phys. Rev. A 74 032711
[11] Mullamphy D F T, Peach G, Venturi V, Whittingham I B and Gibson S G 2007 J. Phys. B 40 1141
[12] Alioua K, Bouledroua M, Allouche A R and Aubert-Frècon M 2008 J. Phys. B 41 175102
[13] Boutarfa H, Alioua K, Bouledroua M, Allouche A R and Aubert-Frècon M 2012 Phys. Rev. A 86 052504
[14] Bouhadjar F, Alioua K, Bouazza M T and Bouledroua M 2014 J. Phys. B 47 185201
[15] Scheps R, Ottinger C, York G and Gallagher A 1975 J. Chem. Phy. 63 2581
[16] Havey M D, Frolking S E, Wright J J and Balling L C 1981 Phys. Rev. A 24 3105
[17] Balling L C, Wright J J and Havey M D 1982 Phys. Rev. 26 1426
[18] Behmenburg W, Kaiser A, Rebentrost F, Jungen M, Smith M, Luo M and Peach G 1998 J. Phys. B 31 689
[19] Rosenberry M A and Stewart B 2011 J. Phys. B 44 055207
[20] Grosser J, Hoffmann O, Rebentrost F and Tiemann E 2014 J. Phys. B 47 165102
[21] Hager G D, Lott G E, Archibald A J, Blank L, Weeks D E and Perram G P 2014 J. Quant. Spectrosc. Radiat. Transfer 147 261
[22] Mason C R 1991 (PhD. Thesis) (London:University College of London)
[23] Havey M D Private Communication to Mason C R [22]
[24] Herman P S and Sando K M 1978 J. Chem. Phys. 68 1153
[25] Sando K M 1971 Mol. Phys. 21 439
[26] Woerdman J P 1985 J. Phys. B 18 4205
[27] Baranger M 1958 Phys. Rev. 111 481
[28] Szudy J and Baylis W E 1975 J. Quant. Spectrosc. Radiat. Transfer 15 641
[29] Allard N F and Kielkopf J F 1982 Rev. Mod. Phys. 54 1103
[30] Reggami L, Bouledroua M, Allouche A R and Aubert-Frècon M 2009 J. Quant. Spectrosc. Radiat. Transfer 110 72
[31] Werner H J and Knowles P J 1985 J. Chem. Phys. 82 5053
[32] Knowles P J and Werner H J 1985 Chem. Phys. Lett. 115 259
[33] Werner H J and Knowles P J 1988 J. Chem. Phys. 89 5803
[34] Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
[35] Woon D E and Dunning Jr T H 1994 J. Chem. Phys. 100 2975
[36] Davidson E R and Silver D W 1977 Chem. Phys. Lett. 53 403
[37] Boys S F and Bernardi F 1970 Mol. Phys. 19 553
[38] Werner H J, Knowles P J and Lind R 2008 Package of ab initio programs Molpro version 2008.1
[39] Mitroy J and Zhang J Y 2007 Phys. Rev. A 76 032706
[40] Dehmer P and Wharton L 1972 J. Chem. Phys. 57 4821
[41] Kerkines I S K and Mavridis A 2001 J. Phys. Chem. A 105 1983
[42] Lee C J and Havey M D 1991 Phys. Rev. A 43 6066
[43] Czuchaj E, Rebentrost F, Stoll H and Preuss H 1989 Chem. Phys. 136 79
[44] Chu X and Dalgarno A 2002 Phys. Rev. A 66 024701
[45] Press W H, Flannery B P, Teukolsky S A and Vetterling W T 1987 Numerical Recipes. The Art of Scientific Computing (New York:Cambridge University Press)
[46] Numerov B 1933 Publ. Observatoire Central Astrophys. Russ. 2 188
[47] Mott N F and Massey H S W 1965 The Theory of Atomic Collisions (Oxford:Oxford University Press)
[48] Gallagher A 1975 Phys. Rev. A 12 133
[49] Harris M, Lwin N and McCartan D G 1982 J. Phys. B 15 L831
[50] Kielkopf J F 1976 J. Phys. B 9 L547
[51] Lwin N, McCartan D G and Lewis E L 1977 ApJ 213 599
[1] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
[2] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[3] The 266-nm ultraviolet-beam generation of all-fiberized super-large-mode-area narrow-linewidth nanosecond amplifier with tunable pulse width and repetition rate
Shun Li(李舜), Ping-Xue Li(李平雪), Min Yang(杨敏), Ke-Xin Yu(于可新), Yun-Chen Zhu(朱云晨), Xue-Yan Dong(董雪岩), and Chuan-Fei Yao(姚传飞). Chin. Phys. B, 2022, 31(3): 034207.
[4] Temperature dependence of spin pumping in YIG/NiOx/W multilayer
Lijun Ni(倪丽君), Wenqiang Wang(王文强), Lichuan Jin(金立川), Jiandong Ye(叶建东), Hehe Gong(巩贺贺), Xiang Zhan(战翔), Zhendong Chen(陈振东), Longlong Zhang(张龙龙), Xingze Dai(代兴泽), Yao Li(黎遥), Rong Zhang(张荣), Yi Yang(杨燚), Huaiwu Zhang(张怀武), Ronghua Liu(刘荣华), Lina Chen(陈丽娜), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(12): 128504.
[5] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[6] Quantal studies of sodium 3p←3s photoabsorption spectra perturbed by ground lithium atoms
N Lamoudi, F Talbi, M T Bouazza, M Bouledroua, K Alioua. Chin. Phys. B, 2019, 28(6): 063202.
[7] Theoretical investigation of the pressure broadening D1 and D2 lines of cesium atoms colliding with ground-state helium atoms
Moussaoui Abdelaziz, Alioua Kamel, Allouche Abdul-rahman, Bouledroua Moncef. Chin. Phys. B, 2019, 28(10): 103103.
[8] Transverse relaxation determination based on light polarization modulation for spin-exchange relaxation free atomic magnetometer
Xue-Jing Liu(刘学静), Ming Ding(丁铭), Yang Li(李阳), Yan-Hui Hu(胡焱晖), Wei Jin(靳伟), Jian-Cheng Fang(房建成). Chin. Phys. B, 2018, 27(7): 073201.
[9] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
[10] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[11] Combined effect of light intensity and temperature on the magnetic resonance linewidth in alkali vapor cell with buffer gas
Yang Gao(高阳), Hai-Feng Dong(董海峰), Xiang Wang(王翔), Xiao-Fei Wang(王笑菲), Ling-Xiao Yin(尹凌霄). Chin. Phys. B, 2017, 26(6): 067801.
[12] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[13] Cavity linewidth narrowing with dark-state polaritons
Gong-Wei Lin(林功伟), Jie Yang(杨洁), Yue-Ping Niu(钮月萍), Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2016, 25(1): 014201.
[14] Optically pumped quantum MxMR magnetometer with high oscillating magnetic field
Ding Zhi-Chao (丁志超), Yuan Jie (袁杰), Wang Zhi-Guo (汪之国), Yang Kai-Yong (杨开勇), Luo Hui (罗晖). Chin. Phys. B, 2015, 24(8): 083202.
[15] Coherence transfer from 1064 nm to 578 nm using an optically referenced frequency comb
Fang Su (方苏), Jiang Yan-Yi (蒋燕义), Chen Hai-Qin (陈海琴), Yao Yuan (姚远), Bi Zhi-Yi (毕志毅), Ma Long-Sheng (马龙生). Chin. Phys. B, 2015, 24(7): 074202.
No Suggested Reading articles found!