Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 073101    DOI: 10.1088/1674-1056/26/7/073101
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media

Ping Guo(郭平)1, Yi-Kun Pan(潘意坤)1, Long-Long Li(李龙龙)2, Bin Tang(唐斌)2
1 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China;
2 School of Sciences, Southwest Petroleum University, Chengdu 610500, China
Abstract  

The hydrate has characteristics of low thermal conductivity and temperature sensitivity. To further analysis the mechanism of thermal conductivity and provide method for the exploitation, transportation and utilization of hydrate, the effect of decomposition and thermal conductivity of methane hydrate in porous media has been studied by using the molecular dynamics simulation. In this study, the simulation is carried out under the condition of temperature 253.15 K–273.15 K and pressure 1 MPa. The results show that the thermal conductivity of methane hydrate increases with the increase of temperature and has a faster growth near freezing. With the addition of porous media, the thermal conductivity of the methane hydrate improves significantly. The methane hydrate-porous media system also has the characteristics of vitreous body. With the decrease of the pore size of the porous media, thermal conductivity of the system increases gradually at the same temperature. It can be ascertained that the porous media of different pore sizes have strengthened the role of the thermal conductivity of hydrates.

Keywords:  methane hydrate      thermal conductivity      molecular dynamics simulations      porous media  
Received:  31 March 2017      Revised:  10 May 2017      Accepted manuscript online: 
PACS:  31.15.at (Molecule transport characteristics; molecular dynamics; electronic structure of polymers)  
  44.30.+v (Heat flow in porous media)  
  65.40.-b (Thermal properties of crystalline solids)  
Fund: 

Project supported by the National Natural Science Foundation of Special Fund and Chinese Academy of Engineering (Grant No.L1322021).

Corresponding Authors:  Ping Guo     E-mail:  guopingswpi@vip.sina.com

Cite this article: 

Ping Guo(郭平), Yi-Kun Pan(潘意坤), Long-Long Li(李龙龙), Bin Tang(唐斌) Molecular dynamics simulation of decomposition and thermal conductivity of methane hydrate in porous media 2017 Chin. Phys. B 26 073101

[1] Bagherzadeh S A, Alavi S, Ripmeester J A and Englezos P 2013 Fluid Phase Equilib 358 114
[2] Max M D 2003 Natural Gas Hydrate in Oceanic and Permafrost Environments (Dordrecht:Kluwer Academic Publishers) pp. 9——16
[3] Holder G D and Angert P 1981 Intersociety Energy Conversion Engineering Conference August 9, 1981 Atlanta, USA, p. 810812
[4] Holder G D, Kamath V A and Godbole S P 1984 Annu. Rev. Energy 9 427
[5] Kvenvolden K A 1988 Chem. Geol. 71 41
[6] Max M D and Lowrie A 1996 J. Pet. Geol. 19 41
[7] Englezos P 1993 Ind. Eng. Chem. Res. 32 1251
[8] Kumar P, Turner D and Sloan E D 2004 J. Geophys. Res. 109 241
[9] Xu W and Ruppel C 1999 J. Geophys. Res. Solid Earth 104 5081
[10] Ju Y Y, Zhang Q M, Gong Z Z and Ji G F 2013 Chin. Phys. B 22 083101
[11] Lin W Q, Xu B, Chen L, Zhou F and Chen J L 2016 Acta Phys. Sin. 65 133102 (in Chinese)
[12] Xu B, Lin W Q, Wang X G, Zeng S W, Zhou G Q and Chen J L 2017 Chin. Phys. B 26 033103
[13] Hu G J and Cao B Y 2014 Chin. Phys. B 23 096501
[14] Wu T Y, Lai W S and Fu B Q 2013 Chin. Phys. B 22 076601
[15] McMullan R K and Jeffrey G A 1965 J. Chem. Phys. 42 2725
[16] Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
[17] Jorgensen W L, Madura J D and Swenson C J 1984 J. Am. Chem. Soc. 106 6638
[18] Plimpton S 1995 J. Comp. Phys. 117 1
[19] Tse J S, Klein M L and McDonald I R 1983 J. Phys. Chem. 87 4198
[20] Abascal J L F, Sanz E, Fernàndez R G and Vega C 2005 J. Chem. Phys. 122 234511
[21] Lopes P E M, Murashov V, Tazi M, Demchuk E and MacKerell A D 2006 J. Phys. Chem. B 110 2782
[22] Rodger P M 1991 AIChE J. 37 1511
[23] Forrisdahl O K, Kwamme B and Haymet A D 1996 J. Mol. Phys. 89 819
[24] Hirai S, Okazaki K, Tabe Y and Kawamura K 1997 Energy Convers. Manage. 38 S301
[25] Handa Y P and Cook J G 1987 J. Phys. Chem. 91 6327
[26] Waite W F, Pinkston J and Kirby S H 2002 Preliminary Laboratory Thermal Conductivity Measurements in Pure Methane Hydrate and Methane Hydrate-sediment Mixtures:a Progress Report (Yokohama:Proceedings of the Fourth International Conference on Gas Hydrate) pp. 728——733
[27] Desmedt A, Bedouret L, Pefoute E, Pouvreau M, Say-Liang-Fat S and Alvarez M 2012 Eur. Phys. J. Special Topics 213 103
[28] Li D L, Liang D Q, Fan S S and Peng H 2010 J. Nat. Gas. Chem. 19 229
[1] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin Lü(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[2] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[3] Shear-horizontal transverse-electric seismoelectric waves in cylindrical double layer porous media
Wei-Hao Wang(王伟豪), Xiao-Yan Zhu(朱晓焱), Jin-Xia Liu(刘金霞), and Zhi-Wen Cui(崔志文). Chin. Phys. B, 2021, 30(1): 014301.
[4] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[5] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[6] Frequency-dependent reflection of elastic wave from thin bed in porous media
Hong-Xing Li(李红星), Chun-Hui Tao(陶春辉), Cai Liu(刘财), Guang-Nan Huang(黄光南), Zhen-An Yao(姚振岸). Chin. Phys. B, 2020, 29(6): 064301.
[7] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[8] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[9] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[10] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[11] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[12] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[13] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[14] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[15] Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method
Yan-Yan Zhang(张燕燕), Ran Cheng(程然), Dong Ni(倪东), Ming Tian(田明), Ji-Wu Lu(卢继武), Yi Zhao(赵毅). Chin. Phys. B, 2019, 28(7): 078105.
No Suggested Reading articles found!