Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 068703    DOI: 10.1088/1674-1056/26/6/068703
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays

Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富)
School of Astronautics, Harbin Institute of Technology, Harbin 150001, China
Abstract  This paper investigates the cooperative formation problem via impulsive control for a class of networked Euler-Lagrange systems. To reduce the energy consumption and communication frequency, the impulsive control method and cooperative formation control approach are combined. With the consideration of system uncertainties and communication delays among agents, neural networks-based adaptive technique is used for the controller design. Firstly, under the constraint that each agent interacts with its neighbors only at some sampling moments, an adaptive neural-networks impulsive formation control algorithm is proposed for the networked uncertain Euler-Lagrange systems without communication delays. Using Lyapunov stability theory and Laplacian potential function in the graph theory, we conclude that the formation can be achieved by properly choosing the constant control gains. Further, when considering communication delays, a modified impulsive formation control algorithm is proposed, in which the extended Halanay differential inequality is used to analyze the stability of the impulsive delayed dynamical systems. Finally, numerical examples and performance comparisons with continuous algorithm are provided to illustrate the effectiveness of the proposed methods.
Keywords:  formation control      multi-agent systems      impulsive control      Euler-Lagrange system  
Received:  22 December 2016      Revised:  14 February 2017      Published:  05 June 2017
PACS:  87.19.lr (Control theory and feedback)  
  02.30.Yy (Control theory)  
  45.80.+r (Control of mechanical systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61304005, 61403103, 61673135, and 61603114).
Corresponding Authors:  Yan-chao Sun     E-mail:  sunyanchao@hit.edu.cn

Cite this article: 

Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富) Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays 2017 Chin. Phys. B 26 068703

[1] Ren W and Beard R W 2008 Distributed Consensus in Multi-vehicle Cooperative Control (London: Springer-Verlag) pp. 25-40
[2] Argyriou A and Pandharipande A 2010 IEEE Trans. Wireless Commun. 9 3112
[3] Bullo F, Cortes J and Martinez S 2009 Distributed control of robotic networks (Princeton: Princeton University Press) pp. 40-50
[4] Beard R W, Lawton J and Hadaegh F Y 2001 IEEE Trans. Control Syst. Technol. 9 777
[5] Ren W and Beard R W 2005 IEEE Trans. Autom. Control 50 655
[6] OlfatiSaber R, Fax A and Murray R M 2007 Proc. IEEE 2007 215
[7] Ren W 2008 IEEE Trans. Autom. Control 53 1503
[8] Liu Y, Min H, Wang S, Ma L and Liu Z 2014 Journal of the Franklin Institute 351 3351
[9] Mei J, Ren W and Ma G F 2011 IEEE Trans. Autom. Control 56 1415
[10] Mei J, Ren W, Chen J and Ma G F 2013 Automatica 49 1723
[11] Chen L M, Lv Y Y, Li C J and Ma G F 2016 Chin. Phys. B 25 128701
[12] Zhang W, Wang Z and Guo Y 2014 Int. J. Syst. Sci. 45 145
[13] Min H, Sun F, Wang S and Li H 2011 IET Control Theory and Appl. 5 145
[14] Ajorlou A, Asadi M M, Aghdam A G and Blouin S 2015 Syst. Control Lett. 82 86
[15] Tian Y P and Liu C L 2008 IEEE Trans. Autom. Control 53 2122
[16] Olfatisaber R and Murray R M 2004 IEEE Trans. Autom. Control 49 1520
[17] Peng B D, Song Y, Sheng L, Wang P W, Hei D W, Zhao J, Li Y, Zhang M and Li K N 2016 Acta Phys. Sin. 65 157801 (in Chinese)
[18] Zhou Z C and Joos B 2016 Chin. Phys. B 25 088701
[19] Guan Z H, Wu Y and Feng G 2012 IEEE Trans. Circ. Syst. I 59 170
[20] Guan Z H, Liu Z W, Feng G and Jian M 2012 Automatica 48 1397
[21] Wang Y and Yi J 2015 IET Control Theory Appl. 9 336
[22] Tang Y, Xing X, Karimi H and Kocarev L 2016 IEEE Trans. Indus. Electron. 63 1299
[23] Wu X, Zhou J, Xiang L, Lin C and Zhang H 2013 Multibody System Dyn. 30 37
[24] Ma C, Shi P, Zhao X and Zeng Q 2015 IEEE Trans. Cybern. 45 1126
[25] Lewis F L, Zhang H, Hengster-Movric K and Das A 2009, Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches (Berlin: Springer) pp. 30-45
[26] Qu Z 2009 Cooperative Control of Dynamical Systems: Applications to Autonomous Vehicles (Berlin: Springer) pp. 103-113
[27] Yang T 2001 Impulsive Control Theory (London: Springer-Verlag) pp. 83-97
[28] Wang L, Chai T and Zhai L 2009 IEEE Trans. Indus. Electron. 56 3296
[29] Lu J, Ho D W C and Cao J 2010 Automatica 46 1215
[30] Wu Q, Zhou J and Xiang L 2011 Neurocomputing 74 3204
[31] Alfriend K T, Vadali S R, Gurfil P, How J and Breger L S 2009 Spacecraft formation flying: Dynamics, control and navigation (Oxford: Butterworth-Heinemann) pp. 104-111
[1] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[2] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[3] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[4] Distance-based formation tracking control of multi-agent systems with double-integrator dynamics
Zixing Wu(吴梓杏), Jinsheng Sun(孙金生), Ximing Wang(王希铭). Chin. Phys. B, 2018, 27(6): 060202.
[5] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[6] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[7] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[8] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[9] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[10] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[11] Cooperatively surrounding control for multiple Euler-Lagrange systems subjected to uncertain dynamics and input constraints
Liang-Ming Chen(陈亮名), Yue-Yong Lv(吕跃勇), Chuan-Jiang Li(李传江), Guang-Fu Ma(马广富). Chin. Phys. B, 2016, 25(12): 128701.
[12] Cluster synchronization of community network with distributed time delays via impulsive control
Hui Leng(冷卉), Zhao-Yan Wu(吴召艳). Chin. Phys. B, 2016, 25(11): 110501.
[13] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[14] Rigidity based formation tracking for multi-agent networks
Bai Lu, Chen Fei, Lan Wei-Yao. Chin. Phys. B, 2015, 24(9): 090206.
[15] Distributed H control of multi-agent systems with directed networks
Liu Wei, Liu Ai-Li, Zhou Shao-Lei. Chin. Phys. B, 2015, 24(9): 090208.
No Suggested Reading articles found!