Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 068103    DOI: 10.1088/1674-1056/26/6/068103
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method

Guan-Qing Yang(杨冠卿)1,2, Shi-Zhu Zhang(张世著)1,2, Bo Xu(徐波)1,2, Yong-Hai Chen(陈涌海)1,2, Zhan-Guo Wang(王占国)1,2
1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Two kinds of InAs/GaAs quantum dot (QD) structures are grown by molecular beam epitaxy in formation-dissolution-regrowth method with different in-situ annealing and regrowth processes. The densities and sizes of quantum dots are different for the two samples. The variation tendencies of PL peak energy, integrated intensity, and full width at half maximum versus temperature for the two samples are analyzed, respectively. We find the anomalous temperature dependence of the InAs/GaAs quantum dots and compare it with other previous reports. We propose a new energy band model to explain the phenomenon. We obtain the activation energy of the carrier through the linear fitting of the Arrhenius curve in a high temperature range. It is found that the GaAs barrier layer is the major quenching channel if there is no defect in the material. Otherwise, the defects become the major quenching channel when some defects exist around the QDs.
Keywords:  quantum dot      photoluminescence      anomalous temperature dependence      activation energy  
Received:  17 January 2017      Revised:  27 March 2017      Accepted manuscript online: 
PACS:  81.07.Ta (Quantum dots)  
  78.55.-m (Photoluminescence, properties and materials)  
  82.20.Pm (Rate constants, reaction cross sections, and activation energies)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB632104) and the National Key Research and Development Program of China (Grant No. 2016YFB0402302).
Corresponding Authors:  Bo Xu     E-mail:  srex@semi.ac.cn

Cite this article: 

Guan-Qing Yang(杨冠卿), Shi-Zhu Zhang(张世著), Bo Xu(徐波), Yong-Hai Chen(陈涌海), Zhan-Guo Wang(王占国) Anomalous temperature dependence of photoluminescence spectra from InAs/GaAs quantum dots grown by formation-dissolution-regrowth method 2017 Chin. Phys. B 26 068103

[1] Lv X Q, Jin P and Wang Z G 2010 Chin. Phys. B 19 018104
[2] Ji H M, Cao Y L, Yang T, Ma W Q, Cao Q and Chen L H 2009 Acta Phys. Sin. 58 1896 (in Chinese)
[3] Wang T, Zhang J J and Liu H Y 2015 Acta Phys. Sin. 64 204209 (in Chinese)
[4] Lv Z R, Ji H M, Yang X G, Luo S, Gao F, Xu F and Yang T 2016 Chin. Phys. Lett. 33 124204
[5] Arakawa Y and Sakaki H 1982 Appl. Phys. Lett. 40 939
[6] Bhattacharya P and Mi Z 2007 Proc. IEEE 95 1723
[7] Zhukov A E, Maksimov M V and Kovsh A R 2012 Semiconductors 46 1225
[8] Wang T, Liu H Y and Zhang J J 2016 Chin. Phys. Lett. 33 044207
[9] Fafaxd S, Raymond S, Wang G, Leon R, Leonar D, Charbonneau S, Merz J L, Petroff P M and Bowers J E 1996 Surf. Sci. 361 778
[10] Fafard S, Leon R, Leonard D, Merz J L and Petroff P M 1994 Phys. Rev. B 50 8086
[11] Xu Z Y, Lu Z D, Yang X P, Yuan Z L, Zheng B Z and Xu J Z 1996 Phys. Rev. B 54 11528
[12] Fafard S, Leon R, Leonard D, Merz J L and Petroff P M 1995 Phys. Rev. B 52 5752
[13] Fafard S, Leonard D, Merz J L and Petroff P M 1994 Appl. Phys. Lett. 65 1388
[14] Xu Z Y, Lu Z D, Yuan Z L, Yang X P, Zheng B Z and Xu J Z 1998 Superlattices Microstruct. 23 381
[15] Dai Y T, Fan J C, Chen Y F, Lin R M, Lee S C and Lin H H 1997 J. Appl. Phys. 82 4489
[16] Huang S S, Niu Z C, Ni H Q, Zhan F, Zhao H, Sun Z and Xia J B 2007 Chin. Phys. B 24 1025
[17] Zhang S Z, Ye X L, Xu B, Liu S M, Zhou W F and Wang Z G 2013 Chin. Phys. Lett. 30 087804
[18] Jiang Q Q, Li W X, Tang C C, Chang Y C, Hao T T, Pan X Y, Ye H T, Li J J and Gu C J 2016 Chin. Phys. B 25 118105
[19] Zhu G, Zheng F, Wang C, Sun Z B, Zhai G J and Zhao Q 2016 Chin. Phys. B 25 118505
[20] Dong Y, Wang G L, Wang H P, Ni H Q, Chen J H, Gao F Q, Qiao Z T, Yang X H and Niu Z C 2014 Chin. Phys. B 23 104209
[21] Naiki H, Masuo S, MacHida S and Itaya A 2017 J. Phys. Chem. C 115 23299
[22] Cheng D F, Li X, Zhang C F, Tan H, Wang C, Pang L F and Shi H C 2017 ACS Appl. Mat. Interf. 7 2847
[23] Andre Schwagmann, Sokratis Kalliakos, Ian Farrer, Jonathan P Griffiths, Geb A C Jones, David A Ritchie and Andrew J Shields 2015 Appl. Phys. Lett. 99 46
[24] Meyer H M, Stockill R, Steiner M, Gall C Le, Matthiesen C, Clarke E, Ludwig A, Reichel J, Atature M and Kohl M 2015 Phys. Rev. Lett. 114 123001
[25] Zhang W, Shi Z W, Huo D Y, Guo X X and Peng C S 2016 Acta Phys. Sin. 65 117801 (in Chinese)
[26] Shang X J, Xu J X, Ma B, Chen Z S, Wei S H, Li M F, Zha G W, Zhang L C, Yu Y, Ni H Q and Niu Z C 2016 Chin. Phys. B 25 107805
[27] Heyn C, Endler D, Zhang K and Hansen W 2000 J. Cryst. Growth 210 421
[28] Heyn C, Endler D, Zhang K and Hansen W 2002 Phys. Rev. B 66 5237
[29] Joyce P B, Krzyzewski T J, Bell G R, Joyce B A and Jones T S 1998 Phys. Rev. B 58 15981
[30] Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
[31] Zhou G Y, Chen Y H, Zhou X L, Xu B, Ye X L and Wang Z G 2010 Physica E 43 308
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[9] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[13] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[14] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[15] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
No Suggested Reading articles found!