Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 064206    DOI: 10.1088/1674-1056/26/6/064206
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Optical pulse evolution in the presence of a probe light in CW-pumped nonlinear fiber

Wei Chen(陈伟), Xue-Liang Zhang(张学亮), Xiao-Yang Hu(胡晓阳), Zhang-Qi Song(宋章启), Zhou Meng(孟洲)
Academy of Ocean Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  We investigate theoretically and numerically the evolutions of optical pulses in the time domain due to modulation instability (MI), where CW pump accompanied with a probe is used as the input of nonlinear fiber. As the fiber length increases, we show that it exhibits beat frequency between the pump and the probe first when the probe lies outside the MI resonance region, and then gradually transforms into a pulse train resulting from spontaneous MI rather than induced MI. However, the regular pulse train is easier to generate in the whole fiber if the probe exists in MI resonance region, and the period of the pulse train is inversely proportional to the frequency spacing between the pump and the probe. It is emphasized that the pulse period can be adjusted only when the probe is in MI resonance region. The numerical simulations are in agreement with the theoretical results. The obtained results are guidable for generating and manipulating the optical pulse train in the fiber.
Keywords:  modulation instability      pulse      fiber      resonance region  
Received:  20 December 2016      Revised:  13 February 2017      Published:  05 June 2017
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.65.Sf (Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61505258) and the Scientific Research Project of National University of Defense Technology (Grant No. JC15-11-02).
Corresponding Authors:  Wei Chen     E-mail:  kevinkobegames@126.com

Cite this article: 

Wei Chen(陈伟), Xue-Liang Zhang(张学亮), Xiao-Yang Hu(胡晓阳), Zhang-Qi Song(宋章启), Zhou Meng(孟洲) Optical pulse evolution in the presence of a probe light in CW-pumped nonlinear fiber 2017 Chin. Phys. B 26 064206

[1] Agrawal G P 2007 Nonlinear Fiber Optics (San Diego: Academic Press)
[2] Wang H L, Yang A J and Leng Y X 2013 Chin. Phys. B 22 074208
[3] Zhong X Q, Cheng K and Xiang A P 2013 Chin. Phys. B 22 034205
[4] Tai K, Hasegawa A and Tomita A 1986 Phys. Rev. Lett. 56 135
[5] Tai K, Tomita A, Jewell J L and Hasegawa A 1986 Appl. Phys. Lett. 49 236
[6] Grosz D F and Fragnito H L 1998 Microwave Opt. Technol. Lett. 18 275
[7] Grosz D F, Mazzali C, Celaschi S, Paradisi A and Fragnito H L 1999 IEEE Photon. Technol. Lett. 11 379
[8] Liu X M 2011 J. Lightwave Technol. 29 179
[9] Chen W, Meng Z and Zhou H J 2012 Chin. Phys. B 21 094215
[10] Mussot A, Kudlinski A, Kolobov M, Louvergneaux E, Douay M and Taki M 2009 Opt. Express 17 17010
[11] Chen W 2013 "Influences and Suppression Techniques of Nonlinear Effects on Long-Haul Interferometric Fiber Sensing Systems", Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)
[12] Leo F, Hansson T, Ricciardi I, De Rosa M, Coen S, Wabnitz S and Erkintalo M 2016 Phys. Rev. A 93 043831
[13] Droques M, Barviau B, Kudlinski A, Taki M, Boucon A, Sylvestre T and Mussot A 2011 Opt. Lett. 36 1359
[14] Van Simaeys G, Emplit P and Haelterman M 2002 J. Opt. Soc. Am. B 19 477
[15] Soto-Crespo J M, Ankiewicz A, Devine N and Akhmediev N 2012 J. Opt. Soc. Am. B 29 1930
[16] Alem M, Soto M A and Thévenaz L 2015 Opt. Express 23 29514
[1] Efficient loading of ultracold sodium atoms in an optical dipole trap from a high power fiber laser
Jing Xu(徐静), Wen-Liang Liu(刘文良), Ning-Xuan Zheng(郑宁宣), Yu-Qing Li(李玉清), Ji-Zhou Wu(武寄洲), Peng Li (李鹏), Yong-Ming Fu(付永明), Jie Ma(马杰), Lian-Tuan Xiao(肖连团), and Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2021, 30(3): 033701.
[2] Effects of initial electronic state on vortex patterns in counter-rotating circularly polarized attosecond pulses
Qi Zhen(甄琪), Jia-He Chen(陈佳贺), Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2021, 30(2): 024203.
[3] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[4] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[5] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[6] Ultrafast photoionization of ions and molecules by orthogonally polarized intense laser pulses: Effects of the time delay
Si-Qi Zhang(张思琪), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙), Wei Feng(冯伟), Sheng-Peng Zhou(周胜鹏), Kai-Jun Yuan(元凯军), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(1): 013201.
[7] A 3D biophysical model for cancer spheroid cell-enhanced invasion in collagen-oriented fiber microenvironment
Miaomiao Hai(海苗苗), Yanping Liu(刘艳平), Ling Xiong(熊玲), Guoqiang Li(李国强), Gao Wang(王高), Hongfei Zhang(张鸿飞), Jianwei Shuai(帅建伟), Guo Chen(陈果), Liyu Liu(刘雳宇). Chin. Phys. B, 2020, 29(9): 098702.
[8] A synaptic transistor with NdNiO3
Xiang Wang(汪翔), Chen Ge(葛琛), Ge Li(李格), Er-Jia Guo(郭尔佳), Meng He(何萌), Can Wang(王灿), Guo-Zhen Yang(杨国桢), Kui-Juan Jin(金奎娟). Chin. Phys. B, 2020, 29(9): 098101.
[9] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[10] Visible-light all-fiber vortex lasers based on mode selective couplers
Chuchu Dong(董楚楚), Jinhai Zou(邹金海), Hongjian Wang(王鸿健), Han Yao(尧涵), Xianglong Zeng(曾祥龙), Yikun Bu(卜轶坤), Zhengqian Luo(罗正钱). Chin. Phys. B, 2020, 29(9): 094204.
[11] Synthesis of new silicene structure and its energy band properties
Wei-Qi Huang(黄伟其), Shi-Rong Liu(刘世荣), Hong-Yan Peng(彭鸿雁), Xin Li(李鑫), Zhong-Mei Huang(黄忠梅). Chin. Phys. B, 2020, 29(8): 084202.
[12] A 3-kHz Er: YAG single-frequency laser with a ‘triple-reflection’ configuration on a piezoelectric actuator
Shuai Huang(黄帅), Qing Wang(王庆), Meng Zhang(张濛), Chaoyong Chen(陈朝勇), Kaixin Wang(王凯鑫), Mingwei Gao(高明伟), Chunqing Gao(高春清). Chin. Phys. B, 2020, 29(8): 084204.
[13] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[14] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[15] Multiphoton quantum dynamics of many-electron atomic and molecular systems in intense laser fields
Peng-Cheng Li(李鹏程), Shih-I Chu. Chin. Phys. B, 2020, 29(8): 083202.
No Suggested Reading articles found!