Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060307    DOI: 10.1088/1674-1056/26/6/060307
GENERAL Prev   Next  

Multi-copy entanglement purification with practical spontaneous parametric down conversion sources

Shuai-Shuai Zhang(张帅帅)1,3, Qi Shu(祁舒)1,3, Lan Zhou(周澜)2, Yu-Bo Sheng(盛宇波)1
1 Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
2 College of Mathematics & Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
3 Bell Honors School, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
Abstract  Entanglement purification is to distill the high quality entanglement from the low quality entanglement with local operations and classical communications. It is one of the key technologies in long-distance quantum communication. We discuss an entanglement purification protocol (EPP) with spontaneous parametric down conversion (SPDC) sources, in contrast to previous EPP with multi-copy mixed states, which requires ideal entanglement sources. We show that the SPDC source is not an obstacle for purification, but can benefit the fidelity of the purified mixed state. This EPP works for linear optics and is feasible in current experiment technology.
Keywords:  quantum communication      entanglement      entanglement purification     
Received:  11 January 2017      Published:  05 June 2017
PACS:  03.67.Hk (Quantum communication)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.Lx (Quantum computation architectures and implementations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11474168 and 61401222), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151502), the Qing Lan Project in Jiangsu Province, China, and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China.
Corresponding Authors:  Yu-Bo Sheng     E-mail:  shengyb@njupt.edu.cn

Cite this article: 

Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波) Multi-copy entanglement purification with practical spontaneous parametric down conversion sources 2017 Chin. Phys. B 26 060307

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[3] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[4] Wang C, Deng F G, Li Y S, Liu X S and Long G L 2005 Phys. Rev. A 71 042305
[5] Hu J Y, Yu B, Jing M Y, Xiao L T, Jia S T, Qin G Q and Long G L 2016 Light Sci. Appl. 5 e16144
[6] Hillery M, Bužek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[7] Ekert A K 1991 Phys. Rev. Lett. 67 661
[8] Wang Q, Zhou X Y and Guo G C 2016 Sci. Rep. 6 35394
[9] Wang Q, Zhang C H and Wang X B 2016 Phys. Rev. A 93 032312
[10] Xu J S and Li C F 2015 Sci. Bull. 60 141
[11] Zhang C, Li C F and Guo G C 2015 Sci. Bull. 60 249
[12] Ma H X, Bao W S, Li H W and Chou C 2016 Chin. Phys. B 25 080309
[13] Tan Y G and Liu Q 2016 Chin. Phys. Lett. 33 090303
[14] Chang Y, Zhang S B, Yan L L and Han G H 2016 Chin. Phys. B 24 050307
[15] Wang M Y, Yan F L and Gao T 2016 Sci. Rep. 6 29853
[16] Ding D, He Y Q, Yan F L and Gao T 2015 Acta Phys. Sin. 64 160301 (in Chinese)
[17] Ye T Y 2015 Sci. China-Phys. Mech. Astron. 58 040301
[18] Lu X M, Zhang L J, Wang Y G, Chen W, Huang D J, Li D, Wang S, He D Y, Yin Z Q, Zhou Y, Hui C and Han Z F 2016 Sci. China-Phys. Mech. Astron. 58 120301
[19] Bennett C H, Brassard G, Popescu S, Schumacher B, Smolin J A and Wootters W K 1996 Phys. Rev. Lett. 76 722
[20] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[21] Sheng Y B and Deng F G 2010 Phys. Rev. A 81 032307
[22] Sheng Y B and Deng F G 2010 Phys. Rev. A 82 044305
[23] Li X H 2010 Phys. Rev. A 82 044304
[24] Deng F G 2011 Phys. Rev. A 83 062316
[25] Deng F G 2011 Phys. Rev. A 84 052312
[26] Sheng Y B and Zhou L 2014 Laser Phys. Lett. 11 085203
[27] Sheng Y B and Zhou L 2015 Sci. Rep. 5 7815
[28] Deutsch D, Ekert A, Jozsa R, Macchiavello C, Popescu S and Sanpera A 1996 Phys. Rev. Lett. 77 2818
[29] Pan J W, Simon C and Zeilinger A 2001 Nature 410 1067
[30] Pan J W, Gasparonl S, Ursin R, Weihs G and Zeilinger A 2003 Nature 423 417
[31] Sangouard N, Simon C, Coudreau T and Gisin N 2008 Phys. Rev. A 78 050301
[32] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[33] Wang C, Zhang Y and Jin G S 2011 Phys. Rev. A 84 032307
[34] Xiao L, Wang C, Zhang W, Huang Y D, Peng J D and Long G L 2008 Phys. Rev. A 77 042315
[35] Wang C, Zhang Y and Jin G S 2011 Quantum Inform. Comput. 11 988
[36] Gonta D and van Loock P 2011 Phys. Rev. A 84 042303
[37] Sheng Y B, Zhou L and Long G L 2013 Phys. Rev. A 88 022302
[38] Zwerger M, Briegel H J and Dür W 2013 Phys. Rev. Lett. 110 260503
[39] Zwerger M, Briegel H J and Dür W 2014 Phys. Rev. A 90 012314
[40] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[41] Wang G Y, Liu Q and Deng F G 2016 Phys. Rev. A 94 032319
[42] He Y Q, Ding D, Yan F L and Gao T 2015 J. Phys. B: At. Mol. Opt. Phys. 48 055501
[43] Zhou L and Sheng Y B 2016 Sci. Rep. 6 28813
[44] Dong D, Zhang Y L, Zou C L, Zou X B and Guo G C 2015 Chin. Phys. B 24 100306
[45] Feng X L, Gong S Q and Xu Z Z 2000 Phys. Lett. A 271 44
[46] Metwally N and Obada A S 2006 Phys. Lett. A 352 45
[47] Chi D P, Kim T and Lee S 2012 Phys. Lett. A 376 143
[48] Xu Y Y, Feng X L and Zhang Z M 2012 Chin. Opt. Lett. 10 042701
[49] JafarpourM and Ashrafpouri F 2015 Quantum Inform. Process. 14 607
[50] Cai C, Zhou L and Sheng Y B 2015 Chin. Phys. B 24 120306
[51] Deng F G, Ren B C and Li X H 2017 Sci. Bull. 62 46
[52] Yamamoto T, Koashi M and Imoto N 2001 Phys. Rev. A 64 012304
[53] Wang X L, Chen L K, Li W, Huang H L, Liu C, Chen C, Luo Y H, Su Z E, Wu D, Li Z D, Lu H, Hu Y, Jiang X, Peng C Z, Li L, Liu N L, Chen Y A, Lu C Y and Pan J W 2016 Phys. Rev. Lett. 117 210502
[54] Wang X L, Cai X D, Su Z E, Chen M C, Wu D, Li L, Liu N L, Lu C Y and Pan J W 2015 Nature 518 516
[55] Zhang C, Huang Y F, Wang Zhao, Liu B H, Li C F and Guo G C 2016 Phys. Rev. Lett. 115 260402
[1] Detection and quantification of entanglement with measurement-device-independent and universal entanglement witness
Zhi-Jin Ke(柯芝锦), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Yu Meng(孟雨), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Ya Xiao(肖芽), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2020, 29(8): 080301.
[2] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[3] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[4] Quantum entanglement dynamics based oncomposite quantum collision model
Xiao-Ming Li(李晓明), Yong-Xu Chen(陈勇旭), Yun-Jie Xia(夏云杰), Qi Zhang(张琦), Zhong-Xiao Man(满忠晓). Chin. Phys. B, 2020, 29(6): 060302.
[5] Quantum teleportation of particles in an environment
Lu Yang(杨璐), Yu-Chen Liu(刘雨辰), Yan-Song Li(李岩松). Chin. Phys. B, 2020, 29(6): 060301.
[6] Non-Markovian entanglement transfer to distant atoms in a coupled superconducting resonator
Qingxia Mu(穆青霞), Peiying Lin(林佩英). Chin. Phys. B, 2020, 29(6): 060304.
[7] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[8] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[9] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[10] Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization
Jisuo Wang(王继锁)1,†, Xiangguo Meng(孟祥国)2,‡, and Xiaoyan Zhang(张晓燕)1,2. Chin. Phys. B, 2020, 29(12): 124213.
[11] Thermal entanglement in a spin-1/2 Ising-Heisenberg butterfly-shaped chain with impurities
Meng-Ru Ma(马梦如), Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), and Bin Zhou(周斌). Chin. Phys. B, 2020, 29(11): 110308.
[12] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[13] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[14] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), Yin Zhong(钟寅). Chin. Phys. B, 2020, 29(10): 107301.
[15] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
No Suggested Reading articles found!