Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 044601    DOI: 10.1088/1674-1056/26/4/044601

The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals

Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅)
College of Mathematics Science, Inner Mongolia Normal University, Huhhot 010022, China

Based on the fundamental equations of piezoelasticity of quasicrystal material, we investigated the interaction between a screw dislocation and a wedge-shaped crack in the piezoelectricity of one-dimensional hexagonal quasicrystals. Explicit analytical solutions are obtained for stress and electric displacement intensity factors of the crack, as well as the force on dislocation. The derivation is based on the conformal mapping method and the perturbation technique. The influences of the wedge angle and dislocation location on the image force are also discussed. The results obtained in this paper can be fully reduced to some special cases already available or deriving new ones.

Keywords:  one-dimensional hexagonal piezoelectric quasicrystals      dislocation      wedge-shaped crack      interaction  
Received:  12 September 2016      Revised:  07 November 2016      Published:  05 April 2017
PACS:  46.05.+b (General theory of continuum mechanics of solids)  
  46.50.+a (Fracture mechanics, fatigue and cracks)  
  61.72.Lk (Linear defects: dislocations, disclinations)  

Project supported by the National Natural Science Foundation of China (Grant Nos. 11262017, 11262012, and 11462020), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2015MS0129), the Programme of Higher-level Talents of Inner Mongolia Normal University (Grant No. RCPY-2-2012-K-035), and the Key Project of Inner Mongolia Normal University (Grant No. 2014ZD03).

Corresponding Authors:  Li-Juan Jiang, Guan-Ting Liu     E-mail:;

Cite this article: 

Li-Juan Jiang(姜丽娟), Guan-Ting Liu(刘官厅) The interaction between a screw dislocation and a wedge-shaped crack in one-dimensional hexagonal piezoelectric quasicrystals 2017 Chin. Phys. B 26 044601

[1] Cui L J, Gao J, Du Y F, Zhang G W, Zhang L, Long Y, Yang S W, Zhan Q and Wan F R 2016 Acta Phys. Sin. 65 066102 (in Chinese)
[2] Zheng S B, Gao Z H, Tang B H, Jiang Y H, Luo Y M and Gao Z H 2016 Acta Phys. Sin. 65 014202 (in Chinese)
[3] Zhao Z G, Tian D X, Zhao J, Liang X B, Ma X Y and Yang D R 2015 Acta Phys. Sin. 64 208101 (in Chinese)
[4] Yu T, Xie H X and Wang C Y 2012 Chin. Phys. B 21 026104
[5] Fang Q H, Song H P and Liu Y W 2010 Chin. Phys. B 19 016102
[6] Ding D H, Wang R H, Yang W G and Hu C Z 1995 J. Phys.: Condens. Matter 7 5423
[7] Zhou W M and Fan T Y 2001 Chin. Phys. 10 743
[8] Liu G T and Fan T Y 2003 Sci. China E 46 326
[9] Li L H and Fan T Y 2006 J. Phys.: Condens. Matter 18 10631
[10] Yu J, Guo J H and Xing Y M 2015 Chin. J. Aeron. 28 1287
[11] Guo J H, Yu J, Xing Y M, Pan E N and Li L H 2016 Acta Mech. 227 2595
[12] Yu J, Guo J H, Xing Y M, Pan E N and Xing Y M 2015 Acta Mech. 36 793
[13] Guo J H and Liu G T 2008 Chin. Phys. B 17 2610
[14] Liu X and Guo J H 2016 Theor. Appl. Frac. Mech. 86 225
[15] Head A K 1953 Philos. Mag. 44 92
[16] Ohr S M, Chang S J and Thomson R 1985 J. Appl. Phys. 57 1839
[17] Pak Y E 1990 ASME J. Appl. Mech. 57 647
[18] Zeng X, Fang Q H, Liu Y W and Wen P H 2013 Chin. Phys. B 22 014601
[19] Lee K Y, Lee W G and Pak Y E 2000 ASME J. Appl. Mech. 67 165
[20] Chen B J, Xiao Z M and Liew K M 2002 Int. J. Eng. Sci. 40 621
[21] Liu J X, Liu A and Jiang Z Q 2004 Acta Mech. Sin. 20 519
[22] Li X F and Fan T Y 1999 Phys. Stat. Sol 212 19
[23] Liu G T, Guo R P and Fan T Y 2003 Chin. Phys. 12 1149
[24] Li L H and Liu G T 2012 Acta Phys. Sin. 61 086103 (in Chinese)
[25] Altay G and Domeci M C 2012 Int. J. Solids Struct. 49 3255
[26] Muskhelishvili N I 1963 Some Basic Problems of Mathematical Theory of Elasticity (Noordhoff: Groningen) pp. 123-132
[27] Li X Y, Li P D, Wu T H, Shi M X and Zhu Z W 2014 Phys. Lett. A 378 826
[1] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[2] Theoretical study of the hyperfine interaction constants, Landé g-factors, and electric quadrupole moments for the low-lying states of the 61Ni q+ ( q= 11, 12, 14 , and 15) ions
Ting-Xian Zhang(张婷贤), Yong-Hui Zhang(张永慧), Cheng-Bin Li(李承斌), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2021, 30(1): 013101.
[3] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[4] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[5] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[6] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友). Chin. Phys. B, 2021, 30(1): 018703.
[7] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[8] Acoustic radiation force on thin elastic shells in liquid
Run-Yang Mo(莫润阳), Jing Hu(胡静), Shi Chen(陈时), Cheng-Hui Wang(王成会). Chin. Phys. B, 2020, 29(9): 094301.
[9] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[10] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[11] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[12] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[13] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[14] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[15] Modification of the Peierls-Nabarro model for misfit dislocation
Shujun Zhang(张淑君), Shaofeng Wang(王少峰). Chin. Phys. B, 2020, 29(5): 056102.
No Suggested Reading articles found!