Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040305    DOI: 10.1088/1674-1056/26/4/040305
GENERAL Prev   Next  

Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement

Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇)
Department of Communication Engineering, School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Recently, bidirectional quantum teleportation has attracted a great deal of research attention. However, existing bidirectional teleportation schemes are normally discussed on the basis of perfect quantum environments. In this paper, we first put forward a bidirectional teleportation scheme to transport three-qubit Greenberger-Horne-Zeilinger (GHZ) states based on controled-not (CNOT) operation and single-qubit measurement. Then, we generalize it to the teleportation of multi-qubit GHZ states. Further, we discuss the influence of quantum noise on our scheme by the example of an amplitude damping channel, then we obtain the fidelity of the teleportation. Finally, we utilize the weak measurement and the corresponding reversing measurement to protect the quantum entanglement, which shows an effective enhancement of the teleportation fidelity.
Keywords:  quantum teleportation      quantum decoherence      amplitude damping      weak measurement  
Received:  07 November 2016      Revised:  23 December 2016      Published:  05 April 2017
PACS:  03.67.Pp (Quantum error correction and other methods for protection against decoherence)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61172071), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 16JK1711), the International Scientific Cooperation Program of Shaanxi Province, China (Grant No. 2015KW-013), and the Natural Science Foundation Research Project of Shaanxi Province, China (Grant No. 2016JQ6033).
Corresponding Authors:  Guang Yang     E-mail:  sharon.yg@163.com

Cite this article: 

Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏), Jiao Jin(金娇) Bidirectional multi-qubit quantum teleportation in noisy channel aided with weak measurement 2017 Chin. Phys. B 26 040305

[1] Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[3] Li X H, Deng F G and Zhou H Y 2007 Chin. Phys. Lett. 24 1151
[4] Zhou P, Li X H, Deng F G and Zhou H Y 2007 J. Phys. A: Math. Theor. 40 13121
[5] Man Z X, Xia Y J and An N B 2007 Phys. Rev. A 75 052306
[6] Yan F L and Ding H W 2006 Chin. Phys. Lett. 23 17
[7] Pati A K and Agrawal P 2007 Phys. Lett. A 371 185
[8] Chen X B, Du J Z, Wen Q Y and Zhu F C 2008 Chin. Phys. B 17 771
[9] Yan F L and Yan T 2010 Chin. Sci. Bull. 55 902
[10] Huelga S F, Vaccaro J A, Chefles A and Plenio M B 2001 Phys. Rev. A 63 042303
[11] Huelga S F, Plenio M B and Vaccaro J A 2002 Phys. Rev. A 65 042316
[12] Zha X W, Zou Z C, Qi J X and Song H Y 2013 Int. J. Theor. Phys. 52 1740
[13] Li Y H and Nie L P 2013 Int. J. Theor. Phys. 52 1630
[14] An Y 2013 Int. J. Theor. Phys. 52 3870
[15] Chen Y 2014 Int. J. Theor. Phys. 53 1454
[16] Sang M H 2016 Int. J. Theor. Phys. 55 1333
[17] Li Y H 2016 Int. J. Theor. Phys. 55 3008
[18] Yang Y Q, Zha X W and Yu Y 2016 Int. J. Theor. Phys. 55 4197
[19] Binayak S C and Arpan D 2016 Int. J. Theor. Phys. 55 2275
[20] Hassanpour S and Houshmand M 2016 Quantum Inform. Process. 15 905
[21] Pan J W, Simon C, Brukner Č and Zeilinger A 2001 Nature 410 1067
[22] Ren B C, Du F F and Deng F G 2014 Phys. Rev. A 90 052309
[23] Yang G, Lian B W and Nie M 2015 Acta Phys. Sin. 64 010303 (in Chinese)
[24] Shor P W 1995 Phys. Rev. A 52 2493
[25] Wang Y J, Bai B M, Li Z, Peng J Y and Xiao H L 2012 Chin. Phys. B 21 020304
[26] Terhal B M 2015 Rev. Mod. Phys. 87 307
[27] Li C K, Nakahara M, Poon Y T, Sze N S and Tomita 2011 Phys. Rev. A 84 044301
[28] Xu G F, Zhang J, Tong D M, Sjöqvist E and Kwek L C 2012 Phys. Rev. Lett. 109 170501
[29] Liu A P, Cheng L Y, Chen L, Su S L, Wang H F and Zhang S 2014 Opt. Commun. 313 180
[30] Korotkov A N and Jordan A N 2006 Phys. Rev. Lett. 97 166805
[31] Katz N, Neeley M, Ansmann M, Bialczak R C, Hofheinz M, Lucero E, Connell A O, Wang H, Cleland A N, Martinis J M and Korotkov A N 2008 Phys. Rev. Lett. 101 200401
[32] Sun Q, Al-Amri M and Zubairy M S 2009 Phys. Rev. A 80 033838
[33] Liao Z, Al-Amri M and Zubairy M S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 145501
[34] Korotkov A N and Keane K 2010 Phys. Rev. A 81 040103
[35] Lee J C, Jeong Y C, Kim Y S and Kim Y H 2011 Opt. Express 19 16309
[36] Kim Y S, Lee J C, Kwon O and Kim Y H 2012 Nat. Phys. 8 117
[37] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
[38] Yang G, Lian B W and Nie M 2016 Chin. Phys. B 25 080310
[39] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[1] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[2] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[3] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[4] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, M Nassik. Chin. Phys. B, 2020, 29(11): 110301.
[5] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun- Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[6] A primary model of decoherence in neuronal microtubules based on the interaction Hamiltonian between microtubules and plasmon in neurons
Zuoxian Xiang(向左鲜), Chuanxiang Tang(唐传祥), Lixin Yan(颜立新). Chin. Phys. B, 2019, 28(4): 048701.
[7] Improving entanglement of assistance bylocal parity-time symmetric operation
Zhi He(贺志), Zun-Yan Nie(聂尊言), Qiong Wang(王琼). Chin. Phys. B, 2019, 28(12): 120305.
[8] Quantum uncertainty relations of quantum coherence and dynamics under amplitude damping channel
Fugang Zhang(张福刚), Yongming Li(李永明). Chin. Phys. B, 2018, 27(9): 090301.
[9] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[10] Decoherence suppression for three-qubit W-like state using weak measurement and iteration method
Guang Yang(杨光), Bao-Wang Lian(廉保旺), Min Nie(聂敏). Chin. Phys. B, 2016, 25(8): 080310.
[11] Weak value amplification via second-order correlated technique
Ting Cui(崔挺), Jing-Zheng Huang(黄靖正), Xiang Liu(刘翔), Gui-Hua Zeng(曾贵华). Chin. Phys. B, 2016, 25(2): 020301.
[12] Amplifying and freezing of quantum coherence using weak measurement and quantum measurement reversal
Lian-Wu Yang(杨连武), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2016, 25(11): 110303.
[13] A novel scheme of hybrid entanglement swapping and teleportation using cavity QED in the small and large detuning regimes and quasi-Bell state measurement method
R Pakniat, M K Tavassoly, M H Zandi. Chin. Phys. B, 2016, 25(10): 100303.
[14] Detection of the ideal resource for multiqubit teleportation
Zhao Ming-Jing, Chen Bin, Fei Shao-Ming. Chin. Phys. B, 2015, 24(7): 070302.
[15] Time evolution of a squeezed chaotic field in an amplitude damping channel when used as a generating field for a squeezed number state
Xu Xing-Lei, Li Hong-Qi, Fan Hong-Yi. Chin. Phys. B, 2015, 24(7): 070306.
No Suggested Reading articles found!