Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037304    DOI: 10.1088/1674-1056/26/3/037304

Photon-mediated spin-polarized current in a quantum dot under thermal bias

Feng Chi(迟锋)1, Liming Liu(刘黎明)1, Lianliang Sun(孙连亮)2
1 School of Electronic and Information Engineering, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528400, China;
2 College of Science, North China University of Technology, Beijing 100041, China
Abstract  Spin-polarized current generated by thermal bias across a system composed of a quantum dot (QD) connected to metallic leads is studied in the presence of magnetic and photon fields. The current of a certain spin orientation vanishes when the dot level is aligned to the lead's chemical potential, resulting in a 100% spin-polarized current. The spin-resolved current also changes its sign at the two sides of the zero points. By tuning the system's parameters, spin-up and spin-down currents with equal strength may flow in opposite directions, which induces a pure spin current without the accompany of charge current. With the help of the thermal bias, both the strength and the direction of the spin-polarized current can be manipulated by tuning either the frequency or the intensity of the photon field, which is beyond the reach of the usual electric bias voltage.
Keywords:  quantum dot      spin-polarized current      thermal bias      photon field     
Received:  22 October 2016      Published:  05 March 2017
PACS:  73.21.La (Quantum dots)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274101 and 51362031), the Initial Project for High-Level Talents of UESTC, Zhongshan Insitute, China (Grant No. 415YKQ02), and China Postdoctoral Science Foundation (Grant No. 2014M562301).
Corresponding Authors:  Feng Chi     E-mail:

Cite this article: 

Feng Chi(迟锋), Liming Liu(刘黎明), Lianliang Sun(孙连亮) Photon-mediated spin-polarized current in a quantum dot under thermal bias 2017 Chin. Phys. B 26 037304

[1] Prinz G A 1998 Science 282 1660
[2] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[3] Guo Y, Wang H, Gu B L and Kawazoe Y 2000 Phys. Rev. B 61 1728
[4] Zhang Y T, Guo Y and Li Y C 2005 Phys. Rev. B 72 125334
[5] Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217
[6] Liu P and Xiong S J 2009 Chin. Phys. B 18 5414
[7] Chi F and Li S S 2005 Chin. Phys. Lett. 22 2035
[8] Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M 2009 Chin. Phys. B 18 0783
[9] Wu S Q, Hou T, Zhao G P and Yu W L 2010 Chin. Phys. B 19 047202
[10] Chi F, Sun L L, Huang L and Zhao J 2011 Chin. Phys. B 20 017303
[11] Kato Y, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 5703
[12] Wunderlich J, Kaestner B, Sinova J and Jungwirth T 2005 Phys. Rev. Lett. 9 4
[13] Mucciolo E R, Chamon C and Marcus C M 2002 Phys. Rev. Lett. 89 146802
[14] Xu X D, Wu Y W, Sun B, Huang Q, Cheng J, Steel D G, Bracker A S, Gammon D, Emary C and Sham L J 2007 Phys. Rev. Lett. 99 097401
[15] Ebbens A, Krizhanovskii D N, Tartakovskii A I, Pulizzi F, Wright T, Savelyev A V, Skolnick M S and Hopkinson M 2005 Phys. Rev. B 72 073307
[16] Koppens F H L, Buizerk C, Tielrooij K J, Vink I T, Nowack K C, Meunier T, Kouwenhoven L P and Vandersypen L M K 2006 Nature 442 766
[17] Clark S M, Fu K M C, Ladd T D and Yamamoto Y 2007 Phys. Rev. Lett. 99 040501
[18] Frolov S M, Venkatesan A, Yu W, Folk J A and Wegscheider W 2009 Phys. Rev. Lett. 102 116802
[19] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
[20] Sun Q F, Xing Y X and Shen S Q 2008 Phys. Rev. B 77 195313
[21] Lu H Z and Shen S Q 2008 Phys. Rev. B 77 235309
[22] Chi F and Sun Q F 2010 Phys. Rev. B 81 075310
[23] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[24] Dubi Y and Di Ventra M 2009 Phys. Rev. B 79 081302
[25] Qi F H, Yin Y B and Jin G J 2011 Phys. Rev. B 83 075310
[26] Zhu L C, Jiang X D, Zu X T and Lü H F 2010 Phys. Lett. A 374 4269
[27] Bai X F, Chi F, Zheng J and Li Y N 2012 Chin. Phys. B 21 077301
[28] Ying Y B and Jin G J 2010 Appl. Phys. Lett. 96 093104
[29] Chi F, Zheng J, Liu Y S and Guo Y 2012 Appl. Phys. Lett. 100 233106
[30] Liu Y S, Yang X F, Chi F, Si M S and Guo Y 2012 Appl. Phys. Lett. 101 213109
[31] Chen X B, Liu D P, Duan W H and Guo H 2013 Phys. Rev. B 87 085427
[32] Tagani M B and Soleimani H R 2013 J. Appl. Phys. 113 143709
[33] Jauho A P, Wingreen N S and Meir Y 1994 Phys. Rev. B 50 5528
[34] Souza F M, Carrara T L and Vernek E 2011 Phys. Rev. B 84 115322
[1] Optical properties of core/shell spherical quantum dots
Shuo Li(李硕), Lei Shi(石磊), Zu-Wei Yan(闫祖威). Chin. Phys. B, 2020, 29(9): 097802.
[2] Optical absorption in asymmetrical Gaussian potential quantum dot under the application of an electric field
Xue-Chao Li(李学超), Chun-Bao Ye(叶纯宝), Juan Gao(高娟), Bing Wang(王兵). Chin. Phys. B, 2020, 29(8): 087302.
[3] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[4] Probing the Majorana bound states in a hybrid nanowire double-quantum-dot system by scanning tunneling microscopy
Jia Liu(刘佳), Ke-Man Li(李科曼), Feng Chi(迟锋), Zhen-Guo Fu(付振国), Yue-Fei Hou(侯跃飞), Zhigang Wang(王志刚), Ping Zhang(张平). Chin. Phys. B, 2020, 29(7): 077302.
[5] Photoresponsive characteristics of thin film transistors with perovskite quantum dots embedded amorphous InGaZnO channels
Mei-Na Zhang(张美娜), Yan Shao(邵龑), Xiao-Lin Wang(王晓琳), Xiaohan Wu(吴小晗), Wen-Jun Liu(刘文军), Shi-Jin Ding(丁士进). Chin. Phys. B, 2020, 29(7): 078503.
[6] Zero-energy modes in serially coupled double quantum dots
Fu-Li Sun(孙复莉), Zhen-Hua Li(李振华), Jian-Hua Wei(魏建华). Chin. Phys. B, 2020, 29(6): 067302.
[7] Capacitive coupling induced Kondo-Fano interference in side-coupled double quantum dots
Fu-Li Sun(孙复莉), Yuan-Dong Wang(王援东), Jian-Hua Wei(魏建华), Yi-Jing Yan(严以京). Chin. Phys. B, 2020, 29(6): 067204.
[8] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[9] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[10] Dynamic manipulation of probe pulse and coherent generation of beating signals based on tunneling-induced inference in triangular quantum dot molecules
Nuo Ba(巴诺), Jin-You Fei(费金友), Dong-Fei Li(李东飞), Xin Zhong(钟鑫), Dan Wang(王丹), Lei Wang(王磊), Hai-Hua Wang(王海华), Qian-Qian Bao(鲍倩倩). Chin. Phys. B, 2020, 29(3): 034204.
[11] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[12] Molecular beam epitaxial growth of high quality InAs/GaAs quantum dots for 1.3-μ quantum dot lasers
Hui-Ming Hao(郝慧明), Xiang-Bin Su(苏向斌), Jing Zhang(张静), Hai-Qiao Ni(倪海桥), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(7): 078104.
[13] Modulation of magnetic and electrical properties of bilayer graphene quantum dots using rotational stacking faults
Hong-Ping Yang(杨宏平), Wen-Juan Yuan(原文娟), Jun Luo(罗俊), Jing Zhu(朱静). Chin. Phys. B, 2019, 28(7): 078106.
[14] Magnetotransport properties of graphene layers decorated with colloid quantum dots
Ri-Jia Zhu(朱日佳), Yu-Qing Huang(黄雨青), Jia-Yu Li(李佳玉), Ning Kang(康宁), Hong-Qi Xu(徐洪起). Chin. Phys. B, 2019, 28(6): 067201.
[15] Large-scale control of enhancement and quenching of photoluminescence for ZnSe/ZnS quantum dots and Ag nanoparticles in aqueous solution
Shaoyi Yin(殷少轶), Liming Liao(廖李明), Song Luo(罗松), Zhe Zhang(张喆), Xiaoyu Zhang(张晓宇), Jian Lu(鹿建), Zhanghai Chen(陈张海). Chin. Phys. B, 2019, 28(5): 057803.
No Suggested Reading articles found!