Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037101    DOI: 10.1088/1674-1056/26/3/037101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3

Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模)
School of Physics, Shandong University, Jinan 250100, China
Abstract  

Density functional theory within the local density approximation is used to investigate the effect of the oxygen vacancy on the LaGaO3/SrTiO3 (001) heterojunction. It is found that the energy favorable configuration is the oxygen vacancy located at the 3rd layer of the STO substrate, and the antiferrodistortive distortion is induced by the oxygen vacancy introduced on the SrTiO3 side. Compared with the heterojunction without introducing oxygen vacancy, the heterojunction with introducing the oxygen vacancy does not change the origin of the two-dimensional electron gas (2DEG), that is, the 2DEG still originates from the dxy electrons, which are split from the t2g states of Ti atom at interface; however the oxygen vacancy is not beneficial to the confinement of the 2DEG. The extra electrons caused by the oxygen vacancy dominantly occupy the 3dx2-y2 orbitals of the Ti atom nearest to the oxygen vacancy, thus the density of carrier is enhanced by one order of magnitude due to the introduction of oxygen vacancy compared with the density of the ideal structure heterojunction.

Keywords:  two-dimensional electron gas (2DEG)      first-principles calculation      oxygen vacancy  
Received:  10 November 2016      Revised:  27 December 2016      Accepted manuscript online: 
PACS:  71.10.Ca (Electron gas, Fermi gas)  
  63.20.dk (First-principles theory)  
  61.72.jd (Vacancies)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2013CB632506) and the National Natural Science Foundation of China (Grant Nos. 11374186, 51231007, and 51202132).

Corresponding Authors:  Ji-Chao Li     E-mail:  lijichao@sdu.edu.cn

Cite this article: 

Fu-Ning Wang(王芙凝), Ji-Chao Li(李吉超), Xin-Miao Zhang(张鑫淼), Han-Zhang Liu(刘汉璋), Jian Liu(刘剑), Chun-Lei Wang(王春雷), Ming-Lei Zhao(赵明磊), Wen-Bin Su(苏文斌), Liang-Mo Mei(梅良模) Electrical property effect of oxygen vacancies in the heterojunction of LaGaO3/SrTiO3 2017 Chin. Phys. B 26 037101

[1] Ohtomo A and Hwang H Y 2004 Nature 427 423
[2] Thiel S, Hammerl G, Schmehl A, Schneider C W and Mannhart J 2006 Science 313 1942
[3] Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U, Maan J C, Van der Wiel W G, Rijnders G, Blank D H A and Hilgenkamp H 2007 Nat. Mater. 6 493
[4] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Ruetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M and Mannhart J 2007 Science 317 1196
[5] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J and Triscone J M 2008 Nature 456 624
[6] Li L, Richter C, Mannhart J and Ashoori R C 2011 Nat. Phys. 7 762
[7] Bert J A, Kalisky B, Bell C, Kim M, Hikita Y, Hwang H Y and Moler K A 2011 Nat. Phys. 7 767
[8] Dikin D A, Mehta M, Bark C W, Folkman C M, Eom C B and Chandrasekhar V 2011 Phys. Rev. Lett. 107 056802
[9] Popovic Z S, Satpathy S and Martin R M 2008 Phys. Rev. Lett. 101 256801
[10] Pentcheva R and Pickett W E 2009 Phys. Rev. Lett. 102 107602
[11] Li J C C, Beltran J I and Munoz M C 2013 Phys. Rev. B 87 075411
[12] Ong P V and Lee J 2013 Phys. Rev. B 87 195212
[13] Zhong Z C, Toth A and Held K 2013 Phys. Rev. B 87 161102
[14] Du Y L, Wang C L, Li J C, Zhang X H, Wang F N, Liu J, Zhu Y H, Yin N and Mei L M 2015 Chin. Phys. B 24 037301
[15] Du Y L, Wang C L, Li J C, Xu P P, Zhang X H, Liu J, Su W B and Mei L M 2014 Chin. Phys. B 23 087302
[16] Herranz G, Basletic M, Bibes M, Carretero C, Tafra E, Jacquet E, Bouzehouane K, Deranlot C, Hamzic A, Broto J M, Barthelemy A and Fert A 2007 Phys. Rev. Lett. 98 216803
[17] Kalabukhov A, Gunnarsson R, Borjesson J, Olsson E, Claeson T and Winkler D 2007 Phys. Rev. B 75 121404
[18] Basletic M, Maurice J L, Carretero C, Herranz G, Copie O, Bibes M, Jacquet E, Bouzehouane K, Fusil S and Barthelemy A 2008 Nat. Mater. 7 621
[19] Cen C, Thiel S, Mannhart J and Levy J 2009 Science 323 1026
[20] Chen Y Z, Pryds N, Sun J R, Shen B G and Linderoth S 2013 Chin. Phys. B 22 116803
[21] Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I, Codda M, Marre D, Cantoni C, Gazquez J, Varela M, Pennycook S J and Miletto Granozio F 2010 Appl. Phys. Lett. 97 152111
[22] Nazir S, Singh N and Schwingenschlogl U 2011 Appl. Phys. Lett. 98 262104
[23] Amoruso S, Aruta C, Aurino P, Bruzzese R, Wang X, Granozio F M and di Uccio U S 2012 Appl. Surf. Sci. 258 9116
[24] Aruta C, Amoruso S, Ausanio G, Bruzzese R, Di Gennaro E, Lanzano M, Granozio F M, Riaz M, Sambri A, di Uccio U S and Wang X 2012 Appl. Phys. Lett. 101 031602
[25] Xu Q F, Wu D and Li A D 2013 Phys. Lett. A 377 577
[26] Wang F, Li J, Du Y, Zhang X, Liu H, Liu J, Wang C and Mei L 2015 Appl. Surf. Sci. 355 1316
[27] Nakagawa N, Hwang H Y and Muller D A 2006 Nat. Mater. 5 204
[28] Pentcheva R and Pickett W E 2006 Phys. Rev. B 74 035112
[29] Siemons W, Koster G, Yamamoto H, Harrison W A, Lucovsky G, Geballe T H, Blank D H A and Beasley M R 2007 Phys. Rev. Lett. 98 196802
[30] Kresse G and Furthmuller J 1996 Phys. Rev. B, Condens. Matter 54 11169
[31] Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566
[32] Zhong Z C, Xu P X and Kelly P J 2010 Phys. Rev. B 82 165127
[33] Li Y, Phattalung S N, Limpijumnong S, Kim J and Yu J 2011 Phys. Rev. B 84 245307
[34] Jaekwang L, Chungwei L and Demkov A A 2013 Phys. Rev. B 87 165103
[35] Chen Y Z, Pryds N, Kleibeuker J E, Koster G, Sun J R, Stamate E, Shen B G, Rijnders G and Linderoth S 2011 Nano Lett. 11 3774
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[9] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[10] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[15] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
No Suggested Reading articles found!