Chin. Phys. B, 2017, Vol. 26(3): 036601    DOI: 10.1088/1674-1056/26/3/036601
 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next

# General equation describing viscosity of metallic melts under horizontal magnetic field

Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮)
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Abstract  Viscosities of pure Ga, Ga80Ni20, and Ga80Cr20 metallic melts under a horizontal magnetic field were investigated by a torsional oscillation viscometer. A mathematical physical model was established to quantitatively describe the viscosity of single and binary metallic melts under a horizontal magnetic field. The relationship between the viscosity and the electrical resistivity under the horizontal magnetic field was studied, which can be described as ηB=η+(2H)/(πΩ)B2 (ηB is the viscosity under the horizontal magnetic field, η is the viscosity without the magnetic field, H is the height of the sample, Ω is the electrical resistivity, and B is the intensity of magnetic field). The viscosity under the horizontal magnetic field is proportional to the square of the intensity of the magnetic field, which is in very good agreement with the experimental results. In addition, the proportionality coefficient of ηB and quadratic B, which is related to the electrical resistivity, conforms to the law established that increasing the temperature of the completely mixed melts is accompanied by an increase of the electrical resistivity. We can predict the viscosity of metallic melts under magnetic field by measuring the electrical resistivity based on our equation, and vice versa. This discovery is important for understanding condensed-matter physics under external magnetic field.
Keywords:  viscosity      horizontal magnetic field      metallic melts      electrical resistivity
Received:  06 May 2016      Revised:  20 December 2016      Published:  05 March 2017
 PACS: 66.20.Ej (Studies of viscosity and rheological properties of specific liquids) 64.30.Ef (Equations of state of pure metals and alloys) 75.20.En (Metals and alloys)
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51371107).
Corresponding Authors:  Yipeng Xu     E-mail:  1244470102@qq.com

Yipeng Xu(许亦鹏), Xiaolin Zhao(赵晓林), Tingliang Yan(颜廷亮) General equation describing viscosity of metallic melts under horizontal magnetic field 2017 Chin. Phys. B 26 036601

 [1] Wang K L, Jiang K, Chung B, Ouchi T, Burke P, Boysen D, Bradwell D, Kim H, Muecke U and Sadoway D 2014 Nature 514 348 [2] Fassler A and Majidi C 2015 Adv. Mater. 27 1928 [3] Sheng L, Zhang J and Liu J 2014 Adv. Mater. 26 6036 [4] Mi G B and Li P J 2011 Acta. Phys. Sin. 60 046601 (in Chinese) [5] Zhao X L, Bian X F, Bai Y W and Li X X 2012 J. Appl. Phys. 111 103514 [6] Li X L, Bian X F and Hu L N 2010 Phys. Lett. 374 3784 [7] Xiao L and Wei X 2017 Mater. Struct. 50 22 [8] Lu Y Z, Huang Y J, Shen J, Lu X, Qin Z X and Zhang Z H 2014 J. Non-Cryst. Solids. 403 62 [9] Mudry S, Korolyshyn A, Vus V and Yakymovych A 2013 J. Mol. Liq. 179 94 [10] Guo F X, Tian Y, Qin J Y, Xu R F and Zhang Y 2013 J. Mater. Sci. 48 4438 [11] Guo H Z, Bai J Y, Kuo C C and Fu S L 2011 Metall. Mater. Trans. B 42B 261 [12] Assael M J, Mihailidou E K, Brillo J, Stankus S V, Wu J T and Wakeham W A 2012 J. Phys. Chem. Ref. Data 41 033103 [13] Zhao Y and Hou X X 2015 Chin. Phys. B 24 096601 [14] Marc J A, Ivi J A, Juergen B, Sergei V S, Wu J T and William A W 2012 J. Phys. Chem. Ref. Data 41 033101 [15] Wang X J and Li X F 2009 Chin. Phys. Lett. 26 056601 [16] Tao R and Tang H 2014 Fuel 118 69 [17] Fusi L, Farina Aand Rosso F 2015 Int. J. Eng. Sci. 87 110 [18] Ram P, Bhandari A and Sharma K 2010 J. Magn. Magn. Mater. 322 3476 [19] Lang S, Botan V, Oettel M, Hajnal D, Franosch T and Schilling R 2010 Phys. Rev.Lett. 105 125701 [20] Gaunt P 1986 J. Appl. Phys. 59 4129 [21] Zhang K, Bian X F, Li Y M, Liu Y, Yang C C and Zhao X L 2015 Phys. Lett. 379 1464 [22] Wang L S, Shen J, Shang Z and Fu H Z 2013 J. Cryst. Growth. 375 32 [23] Kakimot Ko, Eguchi M and Ozoe H 1997 J. Cryst. Growth. 180 442 [24] Li X, Fautrelle Y, Gagnoud A, Du D, Wang J, Ren Z, Nguyen-Thi H and Mangelinck-Noel N 2014 Acta. Mater. 64 367 [25] Xuan W D, Ren Z M and Li C J 2015 J. Alloy. Compd. 620 10 [26] Liu T, Wang Q, Gao A, . Zhang H W and He J C 2011 J. Alloy. Compd. 509 5822 [27] Sun C J, Geng H R, Zhang N, Teng X Y and Ji L L 2008 Mater. Lett. 62 73 [28] Mao T, Bian X F, Morioka S, Wu Y Q, Li X L and Lv X Q 2007 Phys. Lett. 366 155 [29] Yang J Y, Bian X F, Yang C C, Bai Y W, Li M M and Zhang K 2013 Physica B 415 18 [30] Zhang K, Tian X F, Bian X F Li Y M and Liu Y 2015 J. Phys.:Condens Matter 27 235104 [31] Bian X F, Zhao X L, Wu Y Q and Guo K 2013 J. Appl. Phys. 114 193503 [32] Emadi D, Gruzleski J E and Toguri J M 1993 Metall. Trans. B 24B 1055 [33] Liu R X, Jia P, Li M Y, Geng H R and Leng J F 2015 Mater. Lett. 145 108
 [1] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209. [2] Abnormal breakdown of Stokes-Einstein relation in liquid aluminium Chen-Hui Li (李晨辉), Xiu-Jun Han(韩秀君), Ying-Wei Luan(栾英伟), Jian-Guo Li(李建国). Chin. Phys. B, 2017, 26(1): 016102. [3] Generalized model for laser-induced surface structure in metallic glass Lin-Mao Ye(叶林茂), Zhen-Wei Wu(武振伟), Kai-Xin Liu(刘凯欣), Xiu-Zhang Tang(汤秀章), Xiang-Ming Xiong (熊向明). Chin. Phys. B, 2016, 25(6): 068104. [4] Thermodynamic and transport properties of spiro-(1,1')-bipyrrolidinium tetrafluoroborate and acetonitrile mixtures: A molecular dynamics study Qing-Yin Zhang(张庆印), Peng Xie(谢鹏), Xin Wang(王欣), Xue-Wen Yu(于学文), Zhi-Qiang Shi(时志强), Shi-Huai Zhao(赵世怀). Chin. Phys. B, 2016, 25(6): 066102. [5] A new traffic model with a lane-changing viscosity term Ko Hung-Tang, Liu Xiao-He, Guo Ming-Min, Wu Zheng. Chin. Phys. B, 2015, 24(9): 098901. [6] Viscosities and their correlations with structures of Cu-Ag melts Zhao Yan, Hou Xiao-Xia. Chin. Phys. B, 2015, 24(9): 096601. [7] Relationship between Voronoi entropy and the viscosity of Zr36Cu64 alloy melt based on molecular dynamics Gao Wei, Feng Shi-Dong, Zhang Shi-Liang, Qi Li, Liu Ri-Ping. Chin. Phys. B, 2015, 24(12): 126102. [8] Shear viscosity of aluminum studied by shock compression considering elasto-plastic effects Ma Xiao-Juan, Hao Bin-Bin, Ma Hai-Xia, Liu Fu-Sheng. Chin. Phys. B, 2014, 23(9): 096204. [9] Group solution for an unsteady non-Newtonian Hiemenz flow with variable fluid properties and suction/injection H. M. El-Hawary, Mostafa A. A. Mahmoud, Reda G. Abdel-Rahman, Abeer S. Elfeshawey. Chin. Phys. B, 2014, 23(9): 090203. [10] Sputtering pressure influence on growth morphology, surface roughness, and electrical resistivity for strong anisotropy beryllium film Luo Bing-Chi, Li Kai, Kang Xiao-Li, Zhang Ji-Qiang, He Yu-Dan, Luo Jiang-Shan, Wu Wei-Dong, Tang Yong-Jian. Chin. Phys. B, 2014, 23(6): 066804. [11] Molecular dynamics simulation of self-diffusion coefficients for liquid metals Ju Yuan-Yuan, Zhang Qing-Ming, Gong Zi-Zheng, Ji Guang-Fu. Chin. Phys. B, 2013, 22(8): 083101. [12] A fiber-array probe technique for measuring the viscosity of a substance under shock compression Feng Li-Peng, Liu Fu-Sheng, Ma Xiao-Juan, Zhao Bei-Jing, Zhang Ning-Chao, Wang Wen-Peng, Hao Bin-Bin. Chin. Phys. B, 2013, 22(10): 108301. [13] Acoustic characteristics of bubble bursting at the surface of a high-viscosity liquid Liu Xiao-Bo,Zhang Jian-Run,Li Pu. Chin. Phys. B, 2012, 21(5): 054301. [14] Effects of variable properties on MHD heat and mass transfer flow near a stagnation point towards a stretching sheet in a porous medium with thermal radiation A. M. Salem,Rania Fathy. Chin. Phys. B, 2012, 21(5): 054701. [15] Modeling effective viscosity reduction behaviour of solid suspensions Wei En-Bo, Ji Yan-Ju, Zhang Jun. Chin. Phys. B, 2012, 21(12): 126601.