Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 036102    DOI: 10.1088/1674-1056/26/3/036102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles investigation on N/C co-doped CeO2

Rong-Kang Ren(任荣康)1,2, Ming-Ju Zhang(张明举)1,2, Jian Peng(彭健)1,2, Meng Niu(牛猛)1,2, Jian-Ning Li(李健宁)1,2, Shu-Kai Zheng(郑树凯)1,2,3
1 Research Center for Computational Materials & Device Simulations, Hebei University, Baoding 071002, China;
2 College of Electronic & Information Engineering, Hebei University, Baoding 071002, China;
3 Key Laboratory of Digital Medical Engineering of Hebei Province, Baoding 071002, China
Abstract  The N and C doping effects on the crystal structures, electronic and optical properties of fluorite structure CeO2 have been investigated using the first-principles calculation. Co-doping these two elements results in the local lattice distortion and volume expansion of CeO2. Compared with the energy band structure of pure CeO2, some local energy levels appear in the forbidden band, which may facilitate the light absorption. Moreover, the enhanced photo-catalytic properties of CeO2 were explained through the absorption spectra and the selection rule of the band-to-band transitions.
Keywords:  first-principles      N/C co-doped CeO2      photo-catalytic activity  
Received:  27 September 2016      Revised:  07 December 2016      Accepted manuscript online: 
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  78.20.Ek (Optical activity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61306098).
Corresponding Authors:  Shu-Kai Zheng     E-mail:  zhshk@126.com

Cite this article: 

Rong-Kang Ren(任荣康), Ming-Ju Zhang(张明举), Jian Peng(彭健), Meng Niu(牛猛), Jian-Ning Li(李健宁), Shu-Kai Zheng(郑树凯) First-principles investigation on N/C co-doped CeO2 2017 Chin. Phys. B 26 036102

[1] Su Y F, Tang Z H, Han W L, Song Y and Lu G X 2015 Cata. Surv. Asia 19 68
[2] Zhou H and Zhao Z 2015 Int. Ferr. 164 33
[3] Zhang M J, Li W M, Wu Y, Liu C J, Yan X B and Zheng S K 2016 Chin. Pow. Sci. Tech. 18 1248
[4] Liu S H, Yang L X, Xu S H, Luo S L and Cai Q Y 2009 Elect. Chem. Commun. 11 1748
[5] Chen X B, Glans P A, Qiu X F, Dayal S, Jennings W D, Smith K E, Burda C and Guo J H 2007 Elect. Spect. Relat. Pheno. 162 67
[6] Yu Y, Zhong Q, Cai W and Ding J 2015 J. Mol. Cata. A. Chem. 398 344
[7] Wu C L 2015 Mater. Lett. 139 382
[8] Mao C J, Zhao Y X, Qiu X F, Zhu J J and Burda C 2008 Phys. Chem. Chem. Phys. 10 5633
[9] Hao A M, Zhou T J, Zhu Y, Zhang X Y and Liu R P 2011 Chin. Phys. B 20 047103
[10] Ren D H and Cheng X L 2012 Chin. Phys. B 21 127103
[11] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048
[12] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B384
[13] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[14] Liu X K, Liu C, Zheng Z and Lan X H 2013 Chin. Phys. B 22 087102
[15] Truffault L, Ta M T, Devers T, Konstantinov K, Harel V, Simmonard C, Andreazza C, Nevirkovets I P, Pineau A, Veron O and Blondeau J P 2010 Mater. Res. Bull. 45 527
[16] Xiao W Z, Wang L L, Xu L, Wan Q, Pan A L and Deng H Q 2010 Phys. B 405 4858
[17] Prabhakaran V and Ramani V 2014 J. Electrochem. Soc. 161 F1
[18] Wang S Q and Ye H Q 2014 Chin. Sci. Bull. 59 1624
[19] Maensiri S, Labuayai S, Laokul P, Klinkaewnarong J and Swatsitang E 2014 Jpn. J. Appl. Phys. 53 06JG14
[20] Ayawanna J, Teoh W, Niratisairak S and Sato K 2015 Mater. Sci. Semi. Prob. 40 136
[21] Suzuki T, Kosacki I, Petrovsky V and Anderson H U 2002 J. Appl. Phys. 91 2308
[22] Ruzybayev I, Baik S S, Rumaiz A K, Sterbinsky G E, Woicik J C, Choi H J and Shah S I 2014 Appl. Phys. Lett. 105 221605
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[9] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[15] Topological properties of Sb(111) surface: A first-principles study
Shuangxi Wang(王双喜) and Ping Zhang(张平). Chin. Phys. B, 2022, 31(4): 047105.
No Suggested Reading articles found!