Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 035202    DOI: 10.1088/1674-1056/26/3/035202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Dense pair plasma generation by two laser pulses colliding in a cylinder channel

Jian-Xun Liu(刘建勋)1,2, Yan-Yun Ma(马燕云)1,3,4, Tong-Pu Yu(余同普)1,3, Jun Zhao(赵军)1, Xiao-Hu Yang(杨晓虎)1, De-Bin Zou(邹德滨)1, Guo-Bo Zhang(张国博)1, Yuan Zhao(赵媛)1, Jing-Kang Yang(杨靖康)1, Han-Zhen Li(李汉臻)1, Hong-Bin Zhuo(卓红斌)1, Fu-Qiu Shao(邵福球)1, Shigeo Kawata5
1 College of Science, National University of Defense Technology, Changsha 410073, China;
2 College of Electronic Engineering, Wuhan 430019, China;
3 IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China;
4 Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621000, China;
5 Center for Optical Research and Education, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yohtoh, Utsunomiya 321-8585, Japan
Abstract  An all-optical scheme for high-density pair plasmas generation is proposed by two laser pulses colliding in a cylinder channel. Two dimensional particle-in-cell simulations show that, when the first laser pulse propagates in the cylinder, electrons are extracted out of the cylinder inner wall and accelerated to high energies. These energetic electrons later run into the second counter-propagating laser pulse, radiating a large amount of high-energy gamma photons via the Compton back-scattering process. The emitted gamma photons then collide with the second laser pulse to initiate the Breit-Wheeler process for pairs production. Due to the strong self-generated fields in the cylinder, positrons are confined in the channel to form dense pair plasmas. Totally, the maximum density of pair plasmas can be 4.60×1027 m-3, for lasers with an intensity of 4×1022 W·cm-2. Both the positron yield and density are tunable by changing the cylinder radius and the laser parameters. The generated dense pair plasmas can further facilitate investigations related to astrophysics and particle physics.
Keywords:  pair plasma      laser pulse      simulation  
Received:  28 August 2016      Revised:  14 November 2016      Accepted manuscript online: 
PACS:  52.38.-r (Laser-plasma interactions)  
  32.80.Wr (Other multiphoton processes)  
Fund: Project supported by the National Natural Science Foundation (Grant Nos. 11475260, 11305264, 11622547, 11375265, and 11474360), the National Basic Research Program of China (Grant No. 2013CBA01504), the Research Project of National University of Defense Technology, China (Contract No. JC14-02-02), and the Science Challenge Program, China (Grant No. JCKY2016212A505).
Corresponding Authors:  Yan-Yun Ma, Tong-Pu Yu     E-mail:  yanyunma@126.com;tongpu@nudt.edu.cn

Cite this article: 

Jian-Xun Liu(刘建勋), Yan-Yun Ma(马燕云), Tong-Pu Yu(余同普), Jun Zhao(赵军), Xiao-Hu Yang(杨晓虎), De-Bin Zou(邹德滨), Guo-Bo Zhang(张国博), Yuan Zhao(赵媛), Jing-Kang Yang(杨靖康), Han-Zhen Li(李汉臻), Hong-Bin Zhuo(卓红斌), Fu-Qiu Shao(邵福球), Shigeo Kawata Dense pair plasma generation by two laser pulses colliding in a cylinder channel 2017 Chin. Phys. B 26 035202

[1] Ali Shan S, El-Tantawy S A and Moslem W M 2013 Phys. Plasmas 20 082104
[2] Ruffini R, Vereshchagin G and Xue S 2010 Phys. Rep. 487 1
[3] Khan S A and Wazir Z 2013 Chin. Phys. B 22 025201
[4] Foster J M, Wilde B H, Rosen P A, Williams R J R, Blue B E, Coker R F, Drake R P, Frank A, Keiter P A and Khokhlov A M 2005 Astrophys. J. Lett. 634 L77
[5] Sarri G, Poder K, Cole J, Schumaker W, Piazza A D, Reville B, Doria D, Gizzi L A, Grittani and Kar S 2015 Nat. Commun. 6 6747
[6] Greaves R G, Tinkle M D and Surko C M 1994 Phys. Plasmas 1 1439
[7] Chang H X, Qiao B, Xu Z, Xu X R, Zhou C T, Yan X Q, Wu S Z, Borghesi M, Zepf M and He X T 2015 Phys. Rev. E 92 053107
[8] Jirka M, Klimo O, Bulanov S V, Esirkepov T Z, Gelfer E, Bulanov S S, Weber S and Korn G 2016 Phys. Rev. E 93 023207
[9] Nakamura T and Hayakawa T 2015 Phys. Plasmas 22 083113
[10] Shen B and Meyertervehn J 2002 Phys. Rev. E 65 016405
[11] Jiang M, Xie B S, Sang H B and Li Z L 2013 Chin. Phys. B 22 100307
[12] Zhu X L, Yu T P, Sheng Z M, Yin Y, Turcu I C E and Pukhov A 2016 Nat. Commun. 7 13686
[13] Burke D L, Field R C, Horton-Smith G, Spencer J E, Walz D, Berridge S C, Bugg W M, Shmakov K, Weidemann A W and Bula C 1997 Phys. Rev. Lett. 79 1626
[14] Yan Y H, Wu Y, Dong K, Zhang B, Zhao Z, Yao Z and Gu Y 2014 Eur. Phys. J. D 68 4
[15] Gahn C, Tsakiris G, Pretzler G, Witte K, Thirolf P, Habs D, Delfin C and Wahlström C G 2002 Phys. Plasmas 9 987
[16] Williams G J, Pollock B B, Albert F, Park J and Chen H 2015 Phys. Plasmas 22 093115
[17] Sarri G, Schumaker W, Di Piazza A, Vargas M, Dromey B, Dieckmann M E, Chvykov V, Maksimchuk A, Yanovsky V and He Z 2013 Phys. Rev. Lett. 110 255002
[18] Yan Y H, Zhang B, Wu Y, Dong K, Yao Z and Gu Y 2013 Phys. Plasmas 20 103114
[19] Liu J X, Ma Y Y, Zhao J, Yu T P, Yang X H, Gan L F, Zhang G B, Yan J F, Zhuo H B, Liu J J, Zhao Y and Kawata S 2015 Phys. Plasmas 22 103102
[20] Ridgers C P, Brady C S, Duclous R, Kirk J, Bennett K, Arber T, Robinson A and Bell A 2012 Phys. Rev. Lett. 108 165006
[21] Luo W, Zhu Y B, Zhuo H B, Ma Y Y, Song Y M, Zhu Z C, Wang X D, Li X H, Turcu I C E and Chen M 2015 Phys. Plasmas 22 063112
[22] Zhu X L, Yin Y, Yu T P, Shao F Q, Ge Z Y, Wang W Q and Liu J J 2015 New J. Phys. 17 053039
[23] Ridgers C P, Brady C S, Duclous R, Kirk J, Bennett K, Arber T and Bell A 2013 Phys. Plasmas 20 056701
[24] Chen H, Wilks S C, Bonlie J D, Liang E P, Myatt J, Price D F, Meyerhofer D D and Beiersdorfer P 2009 Phys. Rev. Lett. 102 105001
[25] Brady C, Ridgers C, Arber T and Bell A 2013 Plasma Phys. Control. Fusion 55 124016
[26] Yu T P, Yu W, Shao F Q, Luan S X, Zou D B, Ge Z Y, Zhang G B, Wang J W, Wang W Q, Li X H, Liu J X, Ouyang J M and Wong A Y 2015 J. Appl. Phys. 117 023105
[27] Arber T D, Bennett K, Brady C S, Lawrence-Douglas A and Ramsay M G 2015 Plasma Phys. Control. Fusion 57 113001
[28] Ji L L, Pukhov A, I Yu K, Shen B F and Akli K 2014 Phys. Rev. Lett. 112 145003
[29] Yu T P, Pukhov A, Shvets G and Chen M 2010 Phys. Rev. Lett. 105 065002
[30] Ma Y Y, Kawata S, Yu T P, Gu Y Q, Sheng Z M, Yu M Y, Zhuo H B, Liu H J, Yin Y, Takahashi K, Xie X Y, Liu J X, Tian C L and Shao F Q 2012 Phys. Rev. E 85 046403
[31] Ma Y Y, Sheng Z M, Li Y T, Chang W W, Yuan X H, Chen M, Wu H C, Zheng J and Zhang J 2006 Phys. Plasmas 13 110702
[32] Zou D B, Hu L X, Wang W Q, Yang X H, Yu T P, Zhang G B, Ouyang J M, Shao F Q and Zhuo H B 2015 High Energy Density Phys. 18 1
[33] Yi L Q, Pukhov A, Luu-Thanh P and Shen B F 2016 Phys. Rev. Lett. 116 115001
[34] Hu L X, Yu T P, Shao F Q, Zou D B and Yin Y 2015 Phys. Plasmas 22 033104
[35] Zou D B, Zhuo H B, Yu T P, Wu H C, Yang X H, Shao F Q, Ma Y Y, Yin Y and Ge Z Y 2015 Phys. Plasmas 22 023109
[36] Yu T P, Hu L X, Yin Y, Shao F Q, Zhuo H B, Ma Y Y, Yang X H, Luo W and Pukhov A 2014 Appl. Phys. Lett. 105 114101
[37] Liu J J, Yu T P, Yin Y, Zhu X L and Shao F Q 2016 Opt. Express 24 015978
[38] Ni L, Kliem B, Lin J and Wu N 2015 Astrophys. J. 799 79
[39] Liu J X, Ma Y Y, Yu T P, Zhao J, Yang X H, Gan L F, Zhang G B, Zhao Y, Zhang S J, Liu J J, Zhuo H B, Shao F Q and Kawata S 2016 Plasma Phys. Control. Fusion 58 125007
[1] Abnormal magnetic behavior of prussian blue analogs modified with multi-walled carbon nanotubes
Jia-Jun Mo(莫家俊), Pu-Yue Xia(夏溥越), Ji-Yu Shen(沈纪宇), Hai-Wen Chen(陈海文), Ze-Yi Lu(陆泽一), Shi-Yu Xu(徐诗语), Qing-Hang Zhang(张庆航), Yan-Fang Xia(夏艳芳), Min Liu(刘敏). Chin. Phys. B, 2023, 32(4): 047503.
[2] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[7] Gyrokinetic simulation of low-n Alfvénic modes in tokamak HL-2A plasmas
Wen-Hao Lin(林文浩), Ji-Quan Li(李继全), J Garcia, and S Mazzi. Chin. Phys. B, 2023, 32(2): 025202.
[8] Different roles of surfaces' interaction on lattice mismatched/matched surfaces in facilitating ice nucleation
Xuanhao Fu(傅宣豪) and Xin Zhou(周昕). Chin. Phys. B, 2023, 32(2): 028202.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[11] Effect of a static pedestrian as an exit obstacle on evacuation
Yang-Hui Hu(胡杨慧), Yu-Bo Bi(毕钰帛), Jun Zhang(张俊), Li-Ping Lian(练丽萍), Wei-Guo Song(宋卫国), and Wei Gao(高伟). Chin. Phys. B, 2023, 32(1): 018901.
[12] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[13] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[14] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[15] Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet
Linlin Li(李林霖), Jia Luo(罗佳), Jing Xia(夏静), Yan Zhou(周艳), Xiaoxi Liu(刘小晰), and Guoping Zhao(赵国平). Chin. Phys. B, 2023, 32(1): 017506.
No Suggested Reading articles found!