Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 027501    DOI: 10.1088/1674-1056/26/2/027501
Special Issue: TOPICAL REVIEW — Magnetism, magnetic materials, and interdisciplinary research
TOPICAL REVIEW—Magnetism, magnetic materials, and interdisciplinary research Prev   Next  

The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds

Xin-Qi Zheng(郑新奇)1, Bao-Gen Shen(沈保根)2
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
2 Institute of Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100190, China
Abstract  

In this paper, we review the magnetic properties and magnetocaloric effects (MCE) of binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds (including RGa series, RNi series, R12Co7 series, R3Co series and RCu2 series), which have been investigated in detail in the past several years. The R-T compounds are studied by means of magnetic measurements, heat capacity measurements, magnetoresistance measurements and neutron powder diffraction measurements. The R-T compounds show complex magnetic transitions and interesting magnetic properties. The types of magnetic transitions are investigated and confirmed in detail by multiple approaches. Especially, most of the R-T compounds undergo more than one magnetic transition, which has significant impact on the magnetocaloric effect of R-T compounds. The MCE of R-T compounds are calculated by different ways and the special shapes of MCE peaks for different compounds are investigated and discussed in detail. To improve the MCE performance of R-T compounds, atoms with large spin (S) and atoms with large total angular momentum (J) are introduced to substitute the related rare earth atoms. With the atom substitution, the maximum of magnetic entropy change (Δ SM), refrigerant temperature width (Twidth) or refrigerant capacity (RC) is enlarged for some R-T compounds. In the low temperature range, binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds (including RGa series, RNi series, R12Co7 series, R3Co series and RCu2 series) show excellent performance of MCE, indicating the potential application for gas liquefaction in the future.

Keywords:  magnetocaloric effect      magnetic entropy change      magnetic property      neutron diffraction      magnetic structure  
Received:  05 December 2016      Revised:  15 December 2016      Published:  05 February 2017
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Cc (Other ferromagnetic metals and alloys)  
  75.50.Ee (Antiferromagnetics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274357, 51501005, 51590880, and 11674008), the Fundamental Research Funds for the Central Universities, China (Grant No. FRF-TP-15-010A1), the China Postdoctoral Science Foundation (Grant No. 2016M591071), and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-M05).

Corresponding Authors:  Bao-Gen Shen     E-mail:  shenbg@aphy.iphy.ac.cn

Cite this article: 

Xin-Qi Zheng(郑新奇), Bao-Gen Shen(沈保根) The magnetic properties and magnetocaloric effects in binary R-T (R=Pr, Gd, Tb, Dy, Ho, Er, Tm; T=Ga, Ni, Co, Cu) intermetallic compounds 2017 Chin. Phys. B 26 027501

[1] Zimm C, Jastrab A, Sternberg A, Pecharsky V, Gschneidner K, Osborne M and Anderson I 1998 Adv. Cryog. Eng. 43 1759
[2] Tishin A M and Spichkin Y I 2003 The magnetocaloric effect and its applications (London: Institute of Physics Publishing)
[3] Pecharsky V K and Gschneidner K A Jr 1999 J. Magn. Magn. Mater. 200 44
[4] Gschneidner K A Jr, Pecharsky V K and Tsokol A O 2005 Rep. Prog. Phys. 68 1479
[5] Pecharsky V K and Gschneidner K A 1997 Phys. Rev. Lett. 78 4494
[6] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[7] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[8] Tegus O, Brck E, Buschow K H J and de Boer F R 2002 Nature 415 150
[9] Tegus O, Brck E, Zhang L, Dagula, Buschow K H J and de Boer F R 2002 Physica B 319 174
[10] Krenke T, Duman E, Acet M, Wassermann E F, Moya X, Mañosa L and Planes A 2005 Nat. Mater. 4 450
[11] de Campos A, Rocco D L, Carvalho A M G, Caron L, Coelho A A, Gama S, da Silva L M, Gandra F C G, dos Santos A O, Cardoso L P, von Ranke P J and de Oliveira N A 2006 Nat. Mater. 5 802
[12] Du J, Cui W B, Zhang Q, Ma S, Xiong D K and Zhang Z D 2007 Appl. Phys. Lett. 90 042510
[13] Hu F X, Shen B G, Sun J R and Wu G H 2001 Phys. Rev. B 64 132412
[14] Korte B J, Pecharsky V K and Gschneidner K A 1998 J. Appl. Phys. 84 5677
[15] Giguere A, Foldeaki M, Schnelle W and Gmelin E 1999 J. Phys.: Condens. Matter 11 6969
[16] Dong Q Y, Shen B G, Chen J, Shen J and Sun J R 2009 J. Appl. Phys. 105 113902
[17] Chen J, Shen B G, Dong Q Y, Hu F X and Sun J R 2010 Appl. Phys. Lett. 96 152501
[18] Zheng X Q, Shao X P, Chen J, Xu Z Y, Hu F X, Sun J R and Shen B G 2013 Appl. Phys. Lett. 102 022421
[19] Chen J, Shen B G, Dong Q Y, Hu F X and Sun J R 2009 Appl. Phys. Lett. 95 132504
[20] Delyagin N N, Krylov V I and Rozantsev I N 2007 J. Magn. Magn. Mater. 308 74
[21] Baenziger N C and Moriarty J L 1961 Acta Cryst. 14 946
[22] Shohata N 1977 J. Phys. Soc. Jpn. 42 1873
[23] Schob O and Parthe E 1961 Acta Cryst. 14 946
[24] Fujii H, Shohata N, Okamoto T and Tatsumoto E 1971 J. Phys. Soc. Jpn. 31 1592
[25] Cable J W, Koehler W C and Wollan E O 1964 Phys. Rev. 136 A240
[26] Barbara B, Nguyen V N and Siaud E 1972 CR Acad. Sci. 274 1053
[27] Barbara B, Becle C, Nguyen V N and Siaud E 1971 in Durham Conf.
[28] Nesterov V I, Reiman S I and Rozantsev I N 1992 Fiz. Tverd. Tela 34 1270
[29] Susilo R A, Pérez S M, Cobas R, Cadogan J M and Avdeev M 2012 J. Phys.: Conf. Ser. 340 012071
[30] Susilo R A, Cadogan J M, Ryan D H, Lee-Hone N R, Cobas R and Muñoz-Pérez S 2013 Hyperfine. Interact. 226 257
[31] Zhang J Y, Luo J, Li J B, Liang J K, Wang Y C, Ji L N, Liu Y H and Rao G H 2009 J. Alloys Compd. 469 15
[32] Zheng X Q, Chen J, Shen J, Zhang H, Xu Z Y, Gao W W, Wu J F, Hu F X, Sun J R and Shen B G 2012 J. Appl. Phys. 111 07A917
[33] Zheng X Q, Wu H, Chen J, Zhang B, Li Y Q, Hu F X, Sun J R, Huang Q Z and Shen B G 2015 Sci. Rep. 5 14970
[34] Zheng X Q, Chen J, Wang L C, Wu R R, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 115 17A905
[35] von Ranke P, Nóbrega E, de Oliveira I, Gomes A and Sarthour R 2001 Phys. Rev. B 63 184406
[36] von Ranke P J, Pecharsky V K and Gschneidner K A 1998 Phys. Rev. B 58 12110
[37] Tishin A M 1999 Handbook of Magnetic Materials, Vol. 12 (Amsterdam: North Holland)
[38] Chen J, Shen B G, Dong Q Y and Sun J R 2010 Solid State Commun. 150 157
[39] Mo Z J, Shen J, Yan L Q, Tang C C, Lin J, Wu J F, Sun J R, Wang L C, Zheng X Q and Shen B G 2013 Appl. Phys. Lett. 103 052409
[40] Gao T, Nishimura K, Matsumoto T, Namiki T and Isikawa Y 2013 Solid State Commun. 158 1
[41] Zheng X Q, Chen J, Xu Z Y, Mo Z J, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 115 17A938
[42] Banerjee S K 1964 Phys. Lett. 12 16
[43] Chen J, Zheng X Q, Dong Q Y, Sun J R and Shen B G 2011 Appl. Phys. Lett. 99 122503
[44] Hu F X, Shen B G, Sun J R, Pakhomov A B, Wong C Y, Zhang X X, Zhang S Y, Wang G J and Cheng Z H 2001 IEEE. T. Magn. 37 2328
[45] Dinesen A R, Linderoth S and Mørup S 2002 J. Magn. Magn. Mater. 253 28
[46] Zheng X Q, Shen J, Hu F X, Sun J R and Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)
[47] Oesterreicher H and Parker F T 1984 J. Appl. Phys. 55 4334
[48] Samanta T, Das I and Banerjee S 2007 Appl. Phys. Lett. 91 152506
[49] Shen J, Zhao J L, Hu F X, Rao G H, Liu G Y, Wu J F, Li Y X, Sun J R and Shen B G 2010 Appl. Phys. A 99 853
[50] Pecharsky V K and Gschneidner K A 1999 J. Appl. Phys. 86 565
[51] Zou J D, Shen B G and Sun J R 2007 Chin. Phys. 16 1817
[52] Fujieda S, Fujita A and Fukamichi K 2002 Appl. Phys. Lett. 81 1276
[53] Gschneidner K A Jr, Pecharsky V K, Pecharsky A O and Zimm C B 1999 Mater. Sci. Forum 315-317 69
[54] Hu F X, Wang G J, Wang J, Sun Z G, Dong C, Chen H, Zhang X X, Sun J R, Cheng Z H and Shen B G 2002 J. Appl. Phys. 91 7836
[55] Biswas A, Samanta T, Banerjee S and Das I 2008 J. Appl. Phys. 103 013912
[56] van Dover R, Gyorgy E, Cava R, Krajewski J, Felder R and Peck W 1993 Phys. Rev. B 47 6134
[57] Kunkel H P, Zhou X Z, Stampe P A, Cowen J A and Williams G 1996 Phys. Rev. B 53 15099
[58] Stampe P A, Zhou X Z, Kunkel H P, Cowen J A and Williams G 1997 J. Phys.: Condens. Matter 9 3763
[59] Levin E M, Pecharsky V K and Gschneidner K A 1999 Phys. Rev. B 60 7993
[60] Morellon L, Stankiewicz J, Garcia-Landa B, Algarabel P A and Ibarra M R 1998 Appl. Phys. Lett. 73 3462
[61] Sechovsky V, Havela L, Prokes K, Nakotte H, Boer F R and Bruck E 1994 J. Appl. Phys. 76 6913
[62] Chien C L, Xiao J Q and Jiang J S 1993 J. Appl. Phys. 73 5309
[63] Xiao J, Jiang J and Chien C 1992 Phys. Rev. Lett. 68 3749
[64] Allia P, Knobel M, Tiberto P and Vinai F 1995 Phys. Rev. B 52 15398
[65] Sengupta K, Rayaprol S and Sampathkumaran E V 2005 Europhys. Lett. 69 454
[66] Walline R E and Wallace W E 1964 J. Chem. Phys. 41 1587
[67] Isikawa Y, Mori K, Sato K, Ohashi M and Yamaguchi Y 1984 J. Appl. Phys. 55 2031
[68] Pecharsky A, Mozharivskyj Y, Dennis K, Gschneidner K, McCallum R, Miller G and Pecharsky V 2003 Phys. Rev. B 68 134452
[69] Gignoux D and Shah J S 1972 Solid State Commun. 11 1709
[70] Pospisil J, Vejpravova J P and Sechovsky V 2007 J. Magn. Magn. Mater. 316 e552
[71] Wang D, Li Y, Long Y, Ye R, Chang Y and Wan F 2007 J. Magn. Magn. Mater. 311 697
[72] Sato K, Yosida Y, Isikawa Y and Mori K 1986 J. Magn. Magn. Mater. 54-57, Part 1 467
[73] Tajiri Y, Nishimura K, Li L and Hutchison W D 2008 Solid State Commun. 148 365
[74] Nishimura K, Mori K, Narita Y and Hutchison W D 2007 J. Magn. Magn. Mater. 310 1730
[75] Tajiri Y, Nishimura K, Li L, Kawabata T, Sato K, Kindo K and Hutchison W D 2009 J. Alloys Compd. 487 5
[76] Zheng X Q, Zhang B, Wu H, Hu F X, Huang Q Z and Shen B G 2016 J. Appl. Phys. 120 164101
[77] Tripathy S K, Suresh K G, Nirmala R, Nigam A K and Malik S K 2005 Solid State Commun. 134 323
[78] Kumar P, Suresh K G, Nigam A K and Gutfleisch O 2008 J. Phys. D: Appl. Phys. 41 245006
[79] Shen J, Xu Z Y, Zhang H, Zheng X Q, Wu J F, Hu F X, Sun J R and Shen B G 2011 J. Magn. Magn. Mater. 323 2949
[80] Sato K 1982 J. Appl. Phys. 53 8222
[81] Sato K, Iwasaki S, Ishikawa Y and Mori K 1982 J. Appl. Phys. 53 1938
[82] Sato K, Iwasani S, Mori K and Isikawa Y 1983 J. Magn. Magn. Mater. 31-34, Part 1 207
[83] Maezawa K, Wakabayashi S and Sato K 1985 J. Appl. Phys. 57 3219
[84] Pecharsky V K and Gschneidner K A 1997 Phys. Rev. Lett. 78 4494
[85] Wada H, Tanabe Y, Shiga M, Sugawara H and Sato H 2001 J. Alloys Compd. 316 245
[86] Zhang Q, Cho J H, Li B, Hu W J and Zhang Z D 2009 Appl. Phys. Lett. 94 182501
[87] Buschow K H J 1971 Philips Res. Rep. 26 49
[88] Adams W, Moreau J M, Parthe E and Schweizer J 1976 Acta Cryst. B32 2697
[89] Deng J Q, Zhuang Y H, Li J Q and Huang J L 2007 Physica B 391 331
[90] Chen X and Zhuang Y H 2008 Solid State Commun. 148 322
[91] Dong Q Y, Chen J, Zhang X Q, Zheng X Q, Sun J R and Shen B G 2013 J. Appl. Phys. 114 173911
[92] Zheng Z G, Zhong X C, Yu H Y, Liu Z W and Zeng D C 2011 J. Appl. Phys. 109 07A919
[93] Zheng X, Zhang B, Li Y, Wu H, Zhang H, Zhang J, Wang S, Huang Q and Shen B 2016 J. Alloys Compd. 680 617
[94] Buschow K H J 1977 Rep. Prog. Phys. 40 1179
[95] Ehlers G, Ahlert D, Ritter C, Miekeley W and Maletta H 1997 Europhys. Lett. 37 269
[96] Mallik R, Sampathkumaran E and Paulose P L 1998 Solid State Commun. 106 169
[97] Arora P, Tiwari P, Sathe V G and Chattopadhyay M K 2009 J. Magn. Magn. Mater. 321 3278
[98] Gignoux D and Schmitt D 1991 J. Magn. Magn. Mater. 100 99
[99] Zhang X X, Wang F W and Wen G H 2001 J. Phys.: Condens. Matter 13 L747
[100] Duc N H, Anh D T and Brommer P E 2002 Physica B 319 1
[101] Singh N K, Kumar P, Suresh K G, Nigam A K, Coelho A A and Gama S 2007 J. Phys.: Condens. Matter 19 036213
[102] Singh N K, Suresh K G, Nirmala R, Nigam A K and Malik S K 2006 J. Appl. Phys. 99 08K904
[103] Li B, Hu W J, Liu X G, Yang F, Ren W J, Zhao X G and Zhang Z D 2008 Appl. Phys. Lett. 92 242508
[104] von Ranke P, Mota M, Grangeia D, Carvalho A, Gandra F, Coelho A, Caldas A, de Oliveira N and Gama S 2004 Phys. Rev. B 70 134428
[105] Dong Q Y, Chen J, Shen J, Sun J R and Shen B G 2011 Appl. Phys. Lett. 99 132504
[106] Zhang H, Sun Y J, Niu E, Yang L H, Shen J, Hu F X, Sun J R and Shen B G 2013 Appl. Phys. Lett. 103 202412
[107] Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett. 102 092401
[108] Wang L C, Dong Q Y, Lu J, Shao X P, Mo Z J, Xu Z Y, Sun J R, Hu F X and Shen B G 2014 J. Alloys Compd. 587 10
[109] Zhang H, Li Y, Liu E, Ke Y, Jin J, Long Y and Shen B 2015 Sci. Rep. 5 11929
[110] Nagai H, Ogiwara F, Amako Y, Yoshie H, Koga K and Adachi K 1995 J. Magn. Magn. Mater. 140-144 Part 2 793
[111] Tristan N V, Nenkov K, Palewski T, Skokov K P and Nikitin S A 2003 Phys. Status Solidi A 196 325
[112] Baranov N V, Pirogov A N and Teplykh A E 1995 J. Alloys Compd. 226 70
[113] Baranov N V, Bauer E, Hauser R, Galatanu A, Aoki Y and Sato H 2000 Eur. Phys. J. B 16 67
[114] Teplykh A E, Pirogov A N and Baranov N V 2000 Mater. Sci. Forum 321-324 653
[115] Baranov N V, Hilscher G, Korolev A V, Markin P E, Michor H and Yermakov A A 2002 Physica B 324 179
[116] Tripathy S K, Suresh K G and Nigam A K 2006 J. Magn. Magn. Mater. 306 24
[117] Baranov N V, Markin P E, Nakotte H and Lacerda A 1998 J. Magn. Magn. Mater. 177-181, Part 2 1133
[118] Baranov N V, Gubkin A F, Vokhmyanin A P, Pirogov A N, Podlesnyak A, Keller L, Mushnikov N V and Bartashevich M I 2007 J. Phys.: Condens. Matter 19 326213
[119] Li B, Du J, Ren W J, Hu W J, Zhang Q, Li D and Zhang Z D 2008 Appl. Phys. Lett. 92 242504
[120] Shen J and Wu J F 2011 J. Appl. Phys. 109 07A931
[121] Shen J, Zhao J L, Hu F X, Wu J F, Sun J R and Shen B G 2010 Chin. Phys. B 19 047502
[122] Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C and Shen B G 2013 J. Appl. Phys. 113 033908
[123] Mo Z J, Shen J, Yan L Q, Wu J F, Tang C C and Shen B G 2013 J. Alloys Compd. 572 1
[124] Kumar P, Singh N K, Nayak A K, Haldar A, Suresh K G and Nigam A K 2010 J. Appl. Phys. 107 09A932
[125] Podlesnyak A, Daoud-Aladine A, Zaharko O, Markin P and Baranov N 2004 J. Magn. Magn. Mater. 272-276, Part 1 565
[126] Baranov N V, Goto T, Hilscher G, Markin P E, Michor H, Mushnikov N V, Park J G and Yermakov A A 2005 J. Phys.: Condens. Matter 17 3445
[127] Akiko Takahashi S, Akihiko T, Masashi S and Takasu H 1995 Jpn. J. Appl. Phys. 34 L171
[128] Sherwood R C, Williams H J and Wernick J H 1964 J. Appl. Phys. 35 1049
[129] Hashimoto Y, Fujii H and Okamoto T 1976 J. Phys. Soc. Jpn. 40 1519
[130] Sugiyama K, Nakashima M, Yoshida Y, Settai R, Takeuchi T, Kindo K and Onuki Y 1996 Physica B 259 896
[131] Loewenhaupt M, Doerr M, Jahn L, Reif T, Sierks C, Rotter M and Muller H 1998 Physica B 246 472
[132] Doerr M 2003 Physica B: Condensed Matter 329-333 633
[133] Birss R R, Houldsworth R V and Lord D G 1980 J. Magn. Magn. Mater. 15 917
[134] Lord D G and McEwen K A 1980 J. Magn. Magn. Mater. 15 523
[135] Luong N H, Franse J J M and Hien T D 1985 J. Magn. Magn. Mater. 50 153
[136] Bischof J, Diviš M, Svoboda P and Smetana Z 1989 Phys. Status Solidi A 114 K229
[137] Doerr M, Rotter M, Loewenhaupt M, Reif T and Svoboda P 2000 Physica B 284 1331
[138] Gratz E, Sechovsky V, Sima V, Smetana Z and Ström-Olson J O 1982 Phys. Status Solidi B 111 195
[139] Smetana Z, Šima V and Lebech B 1986 J. Magn. Magn. Mater. 59 145
[140] Lebech B, Smetana Z and Šima V 1987 J. Magn. Magn. Mater. 70 97
[141] Karmakar S K, Giri S and Majumdar S 2015 J. Appl. Phys. 117 193904
[142] Zheng X Q, Xu Z Y, Zhang B, Hu F X and Shen B G 2017 J. Magn. Magn. Mater. 421 448
[1] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[2] First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2
Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌). Chin. Phys. B, 2020, 29(9): 097102.
[3] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[4] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[5] Physical properties and magnetic structure of a layered antiferromagnet PrPd0.82Bi2
Meng Yang(杨萌), Changjiang Yi(伊长江), Fengfeng Zhu(朱锋锋), Xiao Wang(王霄), Dayu Yan(闫大禹), Shanshan Miao(苗杉杉), Yixi Su(苏夷希), Youguo Shi(石友国). Chin. Phys. B, 2020, 29(6): 067502.
[6] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[7] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[8] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[9] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[10] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[11] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[12] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[13] The design of 2/8-type high-pressure cell applied to in situ neutron diffraction
Chun-Jiang Xiang(向春江), Qi-Wei Hu(胡启威), Qiang Wang(王强), Lei Xie(谢雷), Xi-Ping Chen(陈喜平), Lei-Ming Fang(房雷鸣), Duan-Wei He(贺端威). Chin. Phys. B, 2019, 28(7): 070701.
[14] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[15] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
No Suggested Reading articles found!