Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 020504    DOI: 10.1088/1674-1056/26/2/020504
GENERAL Prev   Next  

An image encryption scheme based on three-dimensional Brownian motion and chaotic system

Xiu-Li Chai(柴秀丽)1,2, Zhi-Hua Gan(甘志华)3, Ke Yuan(袁科)1, Yang Lu(路杨)4, Yi-Ran Chen(陈怡然)2
1 School of Computer and Information Engineering, Institute of Image Processing and Pattern Recognition, Henan University, Kaifeng 475004, China;
2 Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, PA 15261, USA;
3 School of Software, Henan University, Kaifeng 475004, China;
4 Research Department, Henan University, Kaifeng 475004, China
Abstract  At present, many chaos-based image encryption algorithms have proved to be unsafe, few encryption schemes permute the plain images as three-dimensional (3D) bit matrices, and thus bits cannot move to any position, the movement range of bits are limited, and based on them, in this paper we present a novel image encryption algorithm based on 3D Brownian motion and chaotic systems. The architecture of confusion and diffusion is adopted. Firstly, the plain image is converted into a 3D bit matrix and split into sub blocks. Secondly, block confusion based on 3D Brownian motion (BCB3DBM) is proposed to permute the position of the bits within the sub blocks, and the direction of particle movement is generated by logistic-tent system (LTS). Furthermore, block confusion based on position sequence group (BCBPSG) is introduced, a four-order memristive chaotic system is utilized to give random chaotic sequences, and the chaotic sequences are sorted and a position sequence group is chosen based on the plain image, then the sub blocks are confused. The proposed confusion strategy can change the positions of the bits and modify their weights, and effectively improve the statistical performance of the algorithm. Finally, a pixel level confusion is employed to enhance the encryption effect. The initial values and parameters of chaotic systems are produced by the SHA 256 hash function of the plain image. Simulation results and security analyses illustrate that our algorithm has excellent encryption performance in terms of security and speed.
Keywords:  image encryption      logistic-tent system (LTS)      memristive chaotic system      three-dimensional (3D) Brownian motion     
Received:  03 August 2016      Published:  05 February 2017
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Vx (Communication using chaos)  
  05.40.Jc (Brownian motion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41571417 and 61305042), the National Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), China Postdoctoral Science Foundation (Grant No. 2016M602235), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).
Corresponding Authors:  Xiu-Li Chai     E-mail:  chaixiuli@henu.edu.cn

Cite this article: 

Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Ke Yuan(袁科), Yang Lu(路杨), Yi-Ran Chen(陈怡然) An image encryption scheme based on three-dimensional Brownian motion and chaotic system 2017 Chin. Phys. B 26 020504

[1] Zhang X Y, Zhang G J, Li Xuan, Ren Y Z and Wu J H 2016 Chin. Phys. B 25 054201
[2] Luo Y L, Cao L C, Qiu S H, Lin H, Harkin Jim and Liu J X 2016 Nonlinear Dyn. 83 2293
[3] Wang Z, Huang X, Li Y X and Song X N 2013 Chin. Phys. B 22 010504
[4] Matthews R 1989 Cryptologia 4 29
[5] Wang X Y and Wang Q 2014 Chin. Phys. B 23 030503
[6] Zhou Y C, Hua Z Y, Pun C M and Philip Chen C L 2015 IEEE T. Cybernetics 45 2001
[7] Ye G D 2014 Nonlinear Dyn. 75 417
[8] Chai X L, Gan Z H, Chen Y R and Zhang Y S 2017 Signal Process. 134 35
[9] Zhang Y Q and Wang X Y 2014 Inf. Sci. 273 329
[10] Tong X J, Wang Z, Zhang M, Liu Y, Xu H and Ma J 2015 Nonlinear Dyn. 80 1493
[11] Yen J C and Guo J I 2000 IEEE Proc. Vis. Image Signal Process. 147 167
[12] Li C Q 2016 Signal Process. 118 203
[13] Li H, Wang Y, Yan H, Li L, Li Q and Zhao Z 2013 Opt. Lasers Eng. 51 1327
[14] Chen J X, Zhu Z L, Fu C, Zhang L B and Yu H 2015 Opt. Lasers Eng. 66 1
[15] Liu Y S, Fan H, Xie Y Eric, Cheng G and Li C Q 2015 Int. J. Bifur. Chaos 25 1550188
[16] Sam I S, Devaraj P and Bhuvaneswaran R S 2012 Multimed Tools Appl. 56 315
[17] Zhang G and Liu Q 2011 Opt. Commun. 284 2775
[18] Wang X and He G 2011 Opt. Commun. 284 5804
[19] Eslami Z and Bakhshandeh A 2013 Opt. Commun. 286 51
[20] Akhavan A, Samsudin A and Akhshani A 2015 Opt. Commun. 350 77
[21] Wang X Y and Liu L T 2013 Nonlinear Dyn. 73 795
[22] Mirzaei O, Yaghoobi M and Irani H 2012 Nonlinear Dyn. 67 557
[23] Li C Q, Liu Y S, Xie T and Chen Michael Z Q 2013 Nonlinear Dyn. 73 2083
[24] Zhu C 2012 Opt. Commun. 285 29
[25] Xie Eric Y, Li C Q, Yu S M and Lü J H 2017 Signal Process. 132 150
[26] Shannon C E 1949 Bell Syst. Tech. J. 28 656
[27] Wang X Y, Liu C M, Xu D H and Liu C X 2016 Nonlinear Dyn. 84 1417
[28] Ye G D and Huang X L 2016 Secur. Commun. Netw. 9 2015
[29] Yao W, Zhang X, Zheng Z M and Qiu W J 2015 Nonlinear Dyn. 81 151
[30] Xu L, Li Z, Li J and Hua W 2016 Opt. Lasers Eng. 78 17
[31] Liu H J and Wang X Y 2011 Opt. Commun. 284 3895
[32] Zhou Y C, Cao W J and Philip Chen C L 2014 Signal Process. 100 197
[33] Safwan EI Assad and Mousa Farajallah 2016 Signal Process. Image Commun. 41 144
[34] Zhu Z L, Zhang W, Wong K W and Yu H 2011 Inform. Sci. 181 1171
[35] Liu H J and Wang X Y 2011 Opt. Commun. 284 3895
[36] Martin Del Rey A and Rodriguez Sanchez G 2015 Int. J. Mod. Phys. C 26 1450069
[37] Hua Z Y and Zhou Y C 2016 Inform. Sci. 339 237
[38] Zhang Y S and Xiao D 2014 Commun. Nonlinear Sci. Numer. Simul. 19 74
[39] Zhang W, Wong K, Yu H and Zhu Z L 2013 Commun. Nonlinear Sci. Numer. Simul. 18 584
[40] Fu C, Meng W H, Zhan Y F, Zhu Z L, Francis C M Lau, Chi K Tse and Ma H F 2013 Comput. Biol. Med. 43 1000
[41] Wang X Y and Zhang H L 2015 Opt. Commun. 342 51
[42] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[43] Duan S K, Zhang Y, Hu X, Wang L D and Li C D 2014 Neural Comput. Appl. 25 1437
[44] Adhikari S P, Yang C, Kim H and Chua L O 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1426
[45] Theesar S J S and Balasubramaniam P 2014 Circuits Syst. Signal Process. 33 37
[46] Li Y X, Huang X and Song Y W 2015 Int. J. Bifur. Chaos 25 1550151
[47] Zhou Y C, Bao L and Philip Chen C L 2014 Signal Process. 97 172
[48] Àlvarez G and Li S 2006 Int. J. Bifur. Chaos 16 2129
[49] Mirzaei O, Yaghoobi M and Irani H 2012 Nonlinear Dyn. 67 557
[50] Wang X Y and Xu D H 2014 Nonlinear Dyn. 75 345
[51] Hsiao Hung-I and Lee Junghsi 2015 Signal Process. 117 281
[52] Liu H, Wang X and Kadir A 2012 Appl. Soft Comput. 12 1457
[1] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[2] Phase retrieval algorithm for optical information security
Shi-Qing Wang(王诗晴), Xiang-Feng Meng(孟祥锋), Yu-Rong Wang(王玉荣), Yong-Kai Yin(殷永凯), Xiu-Lun Yang(杨修伦). Chin. Phys. B, 2019, 28(8): 084203.
[3] New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding
Xing-Yuan Wang(王兴元), Jun-Jian Zhang(张钧荐), Fu-Chen Zhang(张付臣), Guang-Hui Cao(曹光辉). Chin. Phys. B, 2019, 28(4): 040504.
[4] Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes
Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅). Chin. Phys. B, 2018, 27(8): 080701.
[5] Multiple-image encryption by two-step phase-shifting interferometry and spatial multiplexing of smooth compressed signal
Xue Zhang(张学), Xiangfeng Meng(孟祥锋), Yurong Wang(王玉荣), Xiulun Yang(杨修伦), Yongkai Yin(殷永凯). Chin. Phys. B, 2018, 27(7): 074205.
[6] Image encryption technique based on new two-dimensional fractional-order discrete chaotic map and Menezes-Vanstone elliptic curve cryptosystem
Zeyu Liu(刘泽宇), Tiecheng Xia(夏铁成), Jinbo Wang(王金波). Chin. Phys. B, 2018, 27(3): 030502.
[7] A novel pseudo-random coupled LP spatiotemporal chaos and its application in image encryption
Xingyuan Wang(王兴元), Yu Wang(王宇), Siwei Wang(王思伟), Yingqian Zhang(张盈谦), Xiangjun Wu(武相军). Chin. Phys. B, 2018, 27(11): 110502.
[8] A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations
Li-Min Zhang(张立民), Ke-Hui Sun(孙克辉), Wen-Hao Liu(刘文浩), Shao-Bo He(贺少波). Chin. Phys. B, 2017, 26(10): 100504.
[9] A self-cited pixel summation based image encryption algorithm
Guo-Dong Ye(叶国栋), Xiao-Ling Huang(黄小玲), Leo Yu Zhang(张愉), Zheng-Xia Wang(王政霞). Chin. Phys. B, 2017, 26(1): 010501.
[10] Image encryption using random sequence generated from generalized information domain
Xia-Yan Zhang(张夏衍), Guo-Ji Zhang(张国基), Xuan Li(李璇), Ya-Zhou Ren(任亚洲), Jie-Hua Wu(伍杰华). Chin. Phys. B, 2016, 25(5): 054201.
[11] A novel color image encryption algorithm based on genetic recombination and the four-dimensional memristive hyperchaotic system
Xiu-Li Chai(柴秀丽), Zhi-Hua Gan(甘志华), Yang Lu(路杨), Miao-Hui Zhang(张苗辉), Yi-Ran Chen(陈怡然). Chin. Phys. B, 2016, 25(10): 100503.
[12] A fast image encryption algorithm based on only blocks in cipher text
Wang Xing-Yuan, Wang Qian. Chin. Phys. B, 2014, 23(3): 030503.
[13] A self-adapting image encryption algorithm based on spatiotemporal chaos and ergodic matrix
Luo Yu-Ling, Du Ming-Hui. Chin. Phys. B, 2013, 22(8): 080503.
[14] A novel image block cryptosystem based on spatiotemporal chaotic system and chaotic neural network
Wang Xing-Yuan, Bao Xue-Mei. Chin. Phys. B, 2013, 22(5): 050508.
[15] Cryptanalysis and improvement of a digital image encryption method with chaotic map lattices
Wang Xing-Yuan, Liu Lin-Tao. Chin. Phys. B, 2013, 22(5): 050503.
No Suggested Reading articles found!