Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 128706    DOI: 10.1088/1674-1056/26/12/128706
Special Issue: TOPICAL REVIEW — Soft matter and biological physics
TOPICAL REVIEW—Soft matter and biological physics Prev   Next  

Modulation and control of DNA charge inversion

Yan-Wei Wang(王艳伟), Guang-Can Yang(杨光参)
Department of Physics, Wenzhou University, Wenzhou 325035, China
Abstract  

DNA is one of most important biological polyelectrolytes, which is negatively charged in physiological condition. Most of Its charge is neutralized by attracting cations in solution. In some conditions, the effective charge of DNA switches its sign from negative to positive, implying charge inversion of DNA. The underlying microscopic mechanism of the counterintuitive phenomenon is still not fully understood although specific chemical affinity and electrostatic ion correlation are considered as two possible driving forces. In this review, we present some recent experimental progress in the modulation and control of DNA charge by single molecular techniques. It has been shown that DNA charge inversion can be modulated bidirectionly by decreasing or increasing the dielectric constant of solution to make the electrophoretic mobility of DNA increase from a negative value to a positive value. In this meanwhile, charge inversion and condensation of DNA in solution of trivalent and quadrivalent counterions are significantly influenced by pH value of the solution. When mixing quadrivalent counterion with mono-, di-and tri-valent counterions in solution, suppression and promotion of DNA charge inversion can be observed. In addition, hydrophobic effect can play an important role in DNA charge inversiton and compaction. We show that the organic monovalent ions of tetraphenyl chloride arsenic (Ph4As+) can induce DNA compaction and even invert its electrophoretic mobility. Thus, hydrophobic effect can be the main driving force of DNA charge inversion and compaction by the organic monovalent ion.

Keywords:  charge inversion      counterions      dielectric constant      pH value      hydrophobicity  
Received:  31 August 2017      Revised:  13 October 2017      Accepted manuscript online: 
PACS:  87.14.gk (DNA)  
  87.15.hp (Conformational changes)  
  82.37.Rs (Single molecule manipulation of proteins and other biological molecules)  
  82.35.Rs (Polyelectrolytes)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11274245, 10974146, and 11304232), the Natural Science Foundation of Zhejiang Provice, China (Grant No. LY17A040006), and the Wenzhou Science and Technology Project, China (Grant No. S20160011).

Corresponding Authors:  Guang-Can Yang     E-mail:  Yanggc@wzu.edu.cn

Cite this article: 

Yan-Wei Wang(王艳伟), Guang-Can Yang(杨光参) Modulation and control of DNA charge inversion 2017 Chin. Phys. B 26 128706

[1] Gosule L C and Schellman J A 1978 J. Mol. Biology 121 311
[2] Widom J and Baldwin R 1980 J. Mol. Biology 144 431
[3] Besteman K, Van Eijk K and Lemay S G 2007 Nat. Phys. 3 641
[4] Li L, Pabit S A, Meisburger S P and Pollack L 2011 Phys. Rev. Lett. 106 108101
[5] Tolokh I S, Pabit S A, Katz A M, Chen Y, Drozdetski A, Baker N, Pollack L and Onufriev A V 2014 Nucleic Acids Research 42 10823
[6] Katz A M, Tolokh I S, Pabit S A, Baker N, Onufriev A V and Pollack L 2017 Biophys. J. 112 22
[7] Qiu X Y, Adrian-Parsegian V and RauD C 2010 Proceeding of the Na-tional Academy of Sciences 107 21482
[8] Zhang Z L, Wu Y Y, Xi K, Sang J P and Tan Z J 2017 Biophys. J. 113 517
[9] Kornyshev A A and Leikin S 2013 Biophys. J. 104 2031
[10] Wu Y Y, Zhang Z L, Zhang J S, Zhu X L and Tan Z J 2015 Nucleic Acids Research 43 6156
[11] Lei X L, Qi W P and Fang H P 2013 Chin. Phys. Lett. 30 128701
[12] Maffeo C, Luan B and Aksimentiev A 2012 Nucleic Acids Research 40 3812
[13] Yoo J and Aksimentiev A 2016 Nucleic Acids Research 44 2036
[14] Besteman K, Zevenbergen M A, Heering H A and Lemay S G 2004 Phys. Rev. Lett. 93 170802
[15] Li W, Wang P Y, Yan J and Li M 2012 Phys. Rev. Lett. 109 218102
[16] Semenov I, Raafatnia S, Sega M, Lobaskin V, Holm C and Kremer F 2013 Phys. Rev. E 87 022302
[17] Pittler J, Bu W, Vaknin D, Travesset A, McGillivray D and Lösche M 2006 Phys. Rev. Lett. 97 046102
[18] Van der Heyden F H, Stein D, Besteman K, Lemay S G and Dekker C 2006 Phys. Rev. Lett. 96 224502
[19] SitkoJ, Mateescu E and Hansma H 2003 Biophys. J. 84 419
[20] Nguyen T T, Rouzina I and Shklovskii B I 2000 J. Chem. Phys. 112 2562
[21] Luan B and Aksimentiev A 2010 Soft Matter 6 243
[22] Nilsson L G, Guldbrand L and Nordenskiöld L 1991 Mol. Phys. 72 177
[23] Wang Y W, Wang R X, Cao B Z, Guo Z L and Yang G C 2016 Sci. Rep. 6 38628
[24] Qiu S X, Wang Y W, Cao B Z, Guo Z L, Chen Y and Yang G C 2015 Soft Matter 11 4099
[25] Guo Z L, Wang Y W, Yang A and Yang G C 2016 Soft Matter 12 6669
[26] Xia W Y, Wang Y W, Yang A and Yang G C 2017 Polymers 9 128
[27] Wang Y W, Ran S Y, Man B and Yang G C 2011 Soft Matter 7 4425
[28] Ji C, Zhang L Y, Dou S X and Wang P Y 2011 Acta Phys. Sin. 60 098703(in Chinese)
[29] Grosberg A Y, Nguyen T and Shklovskii B 2002 Rev. Mod. Phys. 74 329
[30] Baigl D and Yoshikawa K 2005 Biophys. J. 88 3486
[31] Manning G S 1969 J. Chem. Phys. 51 3249
[32] Hultgren A and Rau D C 2004 Biochemistry 43 8272
[33] Mel'nikov S M, Khan M O, Lindman B and Jönsson B 1999 J. Am. Chem. Soc. 121 1130
[34] Todd B A 2009 Biophys. J. 97 539
[35] Ageno M, Dore E and Frontali C 1969 Biophys. J. 9 1281
[36] Besteman K, Zevenbergen M and Lemay S G 2005 Phys. Rev. E 72 061501
[37] Kumar M N R 2000 Reactive and Functional Polymers 46 1
[38] Bloomfield V A and Rouzina I 1998 Methods in Enzymology 295 364
[39] Martin-Molina A, Calero C, Faraudo J, Quesada-Pérez M, Travesset A and Hidalgo-Álvarez R 2009 Soft Matter 5 1350
[40] Shklovskii B I 1999 Phys. Rev. E 60 1
[41] Cherstvy A G 2011 Phys. Chem. Chem. Phys. 13 9942
[1] A comparative study of the self-propelled jumping capabilities of coalesced droplets on RTV surfaces and superhydrophobic surfaces
Sheng-Wu Wang(王晟伍), Lu Peng(彭璐), Jun-Wu Chen(陈俊武), and Lee Li(李黎). Chin. Phys. B, 2021, 30(4): 046501.
[2] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[3] Propagation dynamics of off-axis noncanonical vortices in a collimated Gaussian beam
Cheng Yin(殷澄), Xuefen Kan(阚雪芬), Hailang Dai(戴海浪), Minglei Shan(单鸣雷), Qingbang Han(韩庆邦), Zhuangqi Cao(曹庄琪). Chin. Phys. B, 2019, 28(3): 034205.
[4] Enhanced dielectric and optical properties of nanoscale barium hexaferrites for optoelectronics and high frequency application
J Mohammed, A B Suleiman, Tchouank Tekou Carol T, H Y Hafeez, Jyoti Sharma, Pradip K Maji, Sachin Godara Kumar, A K Srivastava. Chin. Phys. B, 2018, 27(12): 128104.
[5] Effective dielectric constant model of electromagnetic backscattering from stratified air-sea surface film-sea water medium
Tao Xie(谢涛), William Perrie, He Fang(方贺), Li Zhao(赵立), Wen-Jin Yu(于文金), Yi-Jun He(何宜军). Chin. Phys. B, 2017, 26(5): 054102.
[6] Band gaps structure and semi-Dirac point of two-dimensional function photonic crystals
Si-Qi Zhang(张斯淇), Jing-Bin Lu(陆景彬), Yu Liang(梁禺), Ji Ma(马季), Hong Li(李宏), Xue Li(李雪), Xiao-Jing Liu(刘晓静), Xiang-Yao Wu(吴向尧), Xiang-Dong Meng(孟祥东). Chin. Phys. B, 2017, 26(2): 024208.
[7] Nonlinear parametric interactions in ion-implanted semiconductor plasmas having strain-dependent dielectric constants
N Yadav, S Ghosh, P S Malviya. Chin. Phys. B, 2017, 26(1): 015203.
[8] Magnetoelectric effect in multiferroic NdMn2O5
Syed Hamad Bukhari, Javed Ahmad. Chin. Phys. B, 2017, 26(1): 018103.
[9] Alternating current characterization of nano-Pt(II) octaethylporphyrin (PtOEP) thin film as a new organic semiconductor
M Dongol, M M El-Nahass, A El-Denglawey, A A Abuelwafa, T Soga. Chin. Phys. B, 2016, 25(6): 067201.
[10] Improvement of sintering, nonlinear electrical, and dielectric properties of ZnO-based varistors doped with TiO2
Osama A Desouky, K E Rady. Chin. Phys. B, 2016, 25(6): 068402.
[11] Influences of different structures on the characteristics of H2O-based and O3-based LaxAlyO films deposited by atomic layer deposition
Chen-Xi Fei(费晨曦), Hong-Xia Liu(刘红侠), Xing Wang(汪星), Dong-Dong Zhao(赵冬冬), Shu-Long Wang(王树龙), Shu-Peng Chen(陈树鹏). Chin. Phys. B, 2016, 25(5): 058106.
[12] X-ray absorption near-edge structure study on the configuration of Cu2+/histidine complexes at different pH values
Mei-Juan Yu(于梅娟), Yu Wang(王宇), Wei Xu(徐伟). Chin. Phys. B, 2016, 25(4): 048701.
[13] Preparation and piezoelectric properties of potassium sodium niobate glass ceramics
Jiang Shan, Wang Xuan-Ming, Li Jia-Yu, Zhang Yong, Zheng Tao, Lv Jing-Wen. Chin. Phys. B, 2015, 24(6): 067701.
[14] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng, He Lun-Hua, Yan Li-Qin, Wang Zhi-Cui, Sun Yang, Liu Yun-Tao, Chen Dong-Feng, Zhang Sen, Zhao Yong-Gang, Wang Fang-Wei. Chin. Phys. B, 2015, 24(12): 127507.
[15] Residual occurrence and energy property of proteins in HNP model
Jiang Zhou-Ting, Dou Wen-Hui, Shen Yu, Sun Ting-Ting, Xu Peng. Chin. Phys. B, 2015, 24(11): 116802.
No Suggested Reading articles found!