Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127802    DOI: 10.1088/1674-1056/26/12/127802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate

Kai-Lun Zhang(张凯伦)1, Zhi-Ling Hou(侯志灵)1, Song Bi(毕松)2, Hui-Min Fang(房惠敏)1
1. School of Science & Beijing Key Laboratory of Environmentally Harmful Chemicals Assessment, Beijing University of Chemical Technology, Beijing 100029, China;
2. 501 Department, Xi'an Research Institute of High Technology, Xi'an 710025, China
Abstract  Despite widespread use for extending absorption bandwidth, the coexistence and coupling mechanism of multiple resonance is not well understood. We propose two models to describe the multi-resonant behavior of a broadband metamaterial absorber with geometrical-array substrate (GAS). The multi-resonance coupling of GAS is well described by logarithmic law. The interaction between metasurface and GAS can further broaden the absorption bandwidth by generating a new resonance which coexists with original resonances in substrate. The proposed models can thoroughly describe this multiple-resonance behavior, highlighting guidelines for designing broadband absorbers.
Keywords:  metasurface      broadband absorption      dielectrics  
Received:  31 July 2017      Revised:  18 September 2017      Accepted manuscript online: 
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  77.22.-d (Dielectric properties of solids and liquids)  
  52.25.Os (Emission, absorption, and scattering of electromagnetic radiation ?)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51302312), the Fund for Discipline Construction of Beijing University of Chemical Technology (Grant No. XK1702), and the Fundamental Research Funds for the Central Universities, China (Grant No. Jd1601)..
Corresponding Authors:  Zhi-Ling Hou     E-mail:  zhilinghou@gmail.com

Cite this article: 

Kai-Lun Zhang(张凯伦), Zhi-Ling Hou(侯志灵), Song Bi(毕松), Hui-Min Fang(房惠敏) Modeling for multi-resonant behavior of broadband metamaterial absorber with geometrical substrate 2017 Chin. Phys. B 26 127802

[1] Liu Q H, Cao Q, Bi H, Liang C Y, Yuan K P, She W, Yang Y J and Che R C 2016 Adv. Mater. 28 486
[2] Zhu H, F Yi and Cubukcu E 2016 Nat. Photon. 10 709
[3] Fu C, He D W, Wang Y S, Fu M, Geng X and Zhuo Z L 2015 Chin. Phys. B 24 087801
[4] Huang H L, H. Xia, Guo Z B, Chen Y and Li H J 2017 Chin. Phys. B 26 025207
[5] Liang J J, Huang Y, Zhang F, Li N, Ma Y F, Li F F and Chen Y S 2014 Chin. Phys. B 23 088802
[6] Bao Y H, Zhang X Y, Zhang X, Yang L, Zhang X Y, Chen H S, Yang M and Fang D N 2016 J. Power Sources 321 120
[7] Zhang X Y, Chen H S and Fang D N 2016 J. Solid State Electrochem. 20 2835
[8] Wei K, Chen H S, Pei Y M and Fang D N 2016 J. Mech. Phys. Solids 86 173
[9] Zhang X Y, Yang L, Hao F, Chen H S, Yang M and Fang D N 2015 Nanomaterials 5 1985
[10] Sudeep P M, Vinayasree S, Mohanan P, Ajayan P M, Narayanan T N and Anantharaman M R 2015 Appl. Phys. Lett. 106 221603
[11] Chen Y J, Xiao G, Wang T S, Ouyang Q Y, Qi L H, Ma Y, Gao P, Zhu C L, Cao M S and Jin H B 2011 J. Phys. Chem. C 115 13603
[12] Kong L, Yin X W, Yuan X Y, Zhang Y J, Liu X M, Cheng L F and Zhang L T 2014 Carbon 73 185
[13] Zhang Y, Huang Y, Zhang T F, Chang H C, Xiao P S, Chen H H, Huang Z Y and Chen Y S 2015 Adv. Mater. 27 2049
[14] Danlee Y, Huynen I and Bailly C 2012 Appl. Phys. Lett. 100 213105
[15] Ding F, Cui Y X, Ge X C, Jin Y and He S L 2012 Appl. Phys. Lett. 100 103506
[16] Wang B Y, Liu S B, Bian B R, Mao Z W, Liu X C, Ma B and Chen L 2014 J. Appl. Phys. 116 094504
[17] Sui S, Ma H, Wang J F, Pang Y Q and Qu S B 2015 J. Phys. D:Appl. Phys. 48 215101
[18] He Y, Jiang J J, Chen M, Li S C, Miao L and Bie S W 2016 J. Appl. Phys. 119 105103
[19] Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402
[20] Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D:Appl. Phys. 45 235106
[21] Ye D X, Wang Z Y, Xu K W, Li H, Huangfu J T, Wang Z and Ran L X 2013 Phys. Rev. Lett. 111 187402
[22] Xu B Z, Guo C Q, Li Z, Liu L L and Niu Z Y 2014 J. Phys. D:Appl. Phys. 47 255103
[23] He X J, Yan S T, Ma Q X, Zhang Q F, Jia P, Wu F M and Jiang J X 2015 Opt. Commun. 340 44
[24] Shen Y, Pang Y Q, Wang J F, Ma H, Pei Z B and Qu S B 2015 J. Phys. D:Appl. Phys. 48 445008
[25] Chen K, Jia N, Sima B Y, Zhu B, Zhao J M, Feng Y J and Jiang T 2015 J. Phys. D:Appl. Phys. 48 455304
[26] Liu L G and Cha H 2014 J. Phys. D:Appl. Phys. 47 075105
[27] Shen X P, Cui T J, Zhao J M, Ma H F, Jiang W X and Li H 2011 Opt. Express 19 9401
[28] Wang H, Kong P, Cheng W T, Bao W Z, Yu X W, Miao L and Jiang J J 2016 Sci. Rep. 6 23081
[29] Wan M L, He J N, Song Y L and Zhou F Q 2015 Phys. Lett. A 379 1791
[30] Xu W H, He Y, Kong P, Li J L, Xu H B, Miao L, Bie S W and Jiang J J 2015 J. Appl. Phys. 118 184903
[31] Li H, Yuan L H, Zhou B, Shen X P, Cheng Q and Cui T J 2011 J. Appl. Phys. 110 014909
[32] Zadeh A K and Karlsson A 2009 IEEE T. Antenn. Propag. 57 2307
[33] Li M, Xiao S Q, Bai Y Y and Wang B Z 2012 IEEE Antenn. Wirel. Pr. 11 748
[34] Li Z J, Hou Z L, Song W L, Liu X D, Cao Q X, Shao X H and Cao M S 2016 Nanoscale 8 10415
[35] Jing L Q, Wang Z J, Yang Y H, Zheng B, Liu Y M and Chen H S 2017 Appl. Phys. Lett. 110 231103
[36] Liu X M, Lan C W, Bi K, Li B, Zhao Q and Zhou J 2016 Appl. Phys. Lett. 109 062902
[37] Zhang C, Cheng Q, Yang J, Zhao J and Cui T J 2017 Appl. Phys. Lett. 110 143511
[38] Song W L, Zhang K L, Chen M J, Hou Z L, Chen H S, Yuan X J, Ma Y B and Fang D N 2017 Carbon 118 86
[39] Zhou Q, Yin X W, Ye F, Liu X F, Cheng L F and Zhang L T 2017 Mater. Design 123 46
[40] Lichtenecker K 1926 Phys. Z. 27 115
[41] Goncharenko A V, Lozovski V Z and Venger E F 2000 Opt. Commun. 174 19
[42] Fan B H, Zha J W, Wang D R, Zhao J and Dang Z M 2012 Appl. Phys. Lett. 100 092903
[43] Haghzadeh M and Akyurtlu A 2016 J. Appl. Phys. 120 184901
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[3] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[4] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[13] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[14] Ultra-broadband absorber based on cascaded nanodisk arrays
Qi Wang(王琦), Rui Li(李瑞), Xu-Feng Gao(高旭峰), Shi-Jie Zhang(张世杰), Rui-Jin Hong(洪瑞金), Bang-Lian Xu(徐邦联), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2022, 31(4): 040203.
[15] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
No Suggested Reading articles found!