Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(12): 127305    DOI: 10.1088/1674-1056/26/12/127305

Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3

Minhao Zhang(张敏昊)1, Yan Li(李焱)1, Fengqi Song(宋凤麒)2, Xuefeng Wang(王学锋)1, Rong Zhang(张荣)1
1. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China;
2. National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing 210093, China

Quantum phase transition in topological insulators has drawn heightened attention in condensed matter physics and future device applications. Here we report the magnetotransport properties of single crystalline (Bi0.92In0.08)2Se3. The average mobility of~1000 cm2·V-1·s-1 is obtained from the Lorentz law at the low field (< 3 T) up to 50 K. The quantum oscillations rise at a field of~5 T, revealing a high mobility of~1.4×104 cm2·V-1·s-1 at 2 K. The Dirac surface state is evident by the nontrivial Berry phase in the Landau-Fan diagram. The properties make the (Bi0.92In0.08)2Se3 a promising platform for the investigation of quantum phase transition in topological insulators.

Keywords:  quantum phase transition      topological insulators      quantum oscillations      Dirac surface state      nontrivial Berry phase     
Received:  24 October 2017      Published:  05 December 2017
PACS:  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  05.30.Rt (Quantum phase transitions)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  

Project supported by the National Key Basic Research Program of China (Grant Nos. 2014CB921103 and 2017YFA0206304), the National Natural Science Foundation of China (Grant Nos. U1732159 and 11274003), and Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics, China.

Corresponding Authors:  Xuefeng Wang     E-mail:

Cite this article: 

Minhao Zhang(张敏昊), Yan Li(李焱), Fengqi Song(宋凤麒), Xuefeng Wang(王学锋), Rong Zhang(张荣) Quantum oscillations and nontrivial transport in (Bi0.92In0.08)2Se3 2017 Chin. Phys. B 26 127305

[1] Zhang H J, Liu C X, Qi X L, Dai X, Fang Z and Zhang S C 2009 Nat. Phys. 5 438
[2] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussian Z and Shen Z X 2009 Science 325 178
[3] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
[4] Xiu F X and Zhao T T 2013 Chin. Phys. B 22 096104
[5] Guo J H, Qiu F, Zhang Y, Deng H Y, Hu G J, Li X N, Yu G L and Dai N 2013 Chin. Phys. Lett. 30 106801
[6] Sakamoto Y, Hirahara T, Miyazaki H, Kimura S I and Hasegawa S 2010 Phys. Rev. B 81 165432
[7] Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C and Xue Q K 2010 Nat. Phys. 6 712
[8] Xi X X, Ma C L, Liu Z X, Chen Z Q, Ku W, Berger H, Martin C, Tanner D B and Carr G L 2013 Phys. Rev. Lett. 111 155701
[9] Lu Q, Zhang H Y, Cheng Y, Chen X R and Ji G F 2016 Chin. Phys. B 25 026401
[10] Guan S, Yu Z M, Liu Y, Liu G B, Dong L, Lu Y H, Yao Y G and Yang S A 2017 npj Quantum Materials 2 23
[11] Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science 323 919
[12] Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
[13] Sato T, Segawa K, Kosaka K, Souma S, Nakayama K, Eto K, Minami T, Ando Y and Takahashi T 2011 Nat. Phys. 7 840
[14] Xu S Y, Liu C, Alidoust N, et al. 2012 Nat. Commun. 3 1192
[15] Brahlek M, Bansal N, Koirala N, Xu S Y, Neupane M, Liu C, Hasan M Z and Oh S 2012 Phys. Rev. Lett. 109 186403
[16] Wu L, Brahlek M, Aguilar R V, Stier A V, Morris C M, Lubashevsky Y, Bilbro L S, Bansal N, Oh S and Armitage N P 2013 Nat. Phys. 9 410
[17] Dziawa P, Kowalski B J, Dybko K, Buczko R, Szczerbakow A, Szot M, sakowska E, Balasubramanian T, Wojek B M, Berntsen M H, Tjernberg O and Story T 2012 Nat. Mater. 11 1023
[18] Wojek B M, Berntsen M H, Jonsson V, Szczerbakow A, Dziawa P, Kowalski B J, Story T and Tjernberg O 2015 Nat. Commun. 6 8463
[19] Zeljkovic I, Okada Y, Serbyn M, Sankar R, Walkup D, Zhou W, Liu J, Chang G, Wang Y J, Hasan M Z, Chou F, Lin H, Bansil A, Fu L and Madhavan V 2015 Nat. Mater. 14 318
[20] Xu S Y, Neupane M, Belopolski I, Liu C, Alidoust N, Bian G, Jia S, Landolt G, Slomski B, Dil J H, Shibayev P P, Basak S, Chang T R, Jeng H T, Cava R J, Lin H, Bansil A and Hasan M Z 2015 Nat. Commun. 6 6870
[21] Assaf B A, Phuphachong T, Volobuev V V, Bauer G, Springholz G, Vaulchier L A and Guldner Y 2017 npj Quantum Materials 2 26
[22] Zhang C, Liu Y W, Yuan X, Wang W Y, Liang S H and Xiu F X 2015 Nano. Lett. 15 2161
[23] Hsieh D, Xia Y, Qian D, Wray L, Dil J H, Meier F, Osterwalder J, Patthey L, Checkelsky J G Ong N P, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature 460 1101
[24] Chen Y L, Chu J H, Analytis J G, Liu Z K, Igarashi K, Kuo H H, Qi X L, Mo S K, Moore R G Lu D H, Hashimoto M, Sasagawa T, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2010 Science 329 659
[25] Chen T, Chen Q, Schouteden K, Huang W, Wang X, Li Z, Miao F, Wang X, Li Z, Zhao B, Li S, Song F, Wang J, Wang B, Haesendonck C V and Wang G 2014 Nat. Commun. 5 5022
[26] Zhang S, Pi L, Wang R, Yu G, Pan X C, Wei Z, Zhang J, Xi C, Bai Z, Fei F, Wang M, Liao J, Li Y, Wang X, Song F, Zhang Y, Wang B, Xing D and Wang G 2017 Nat. Commun. 8 977
[27] Dufouleur J, Veyrat L, Teichgraber A, Neuhaus S, Nowka C, Hampel S, Cayssol J, Schumann J, Eichler B, Schmidt O G, Buchner B and Giraud R 2013 Phys. Rev. Lett. 110 186806
[28] Pan H, Zhang K, Wei Z, Wang J, Han M, Song F, Wang X, Wang B and Zhang R 2017 Appl. Phys. Lett. 110 053108
[29] Zhang K, Pan H, Wei Z, Zhang M, Song F, Wang X and Zhang R 2017 Chin. Phys. B 26 096101
[30] Zhang G, Qin H, Teng J, Guo J, Guo Q, Dai X, Fang Z and Wu K 2009 Appl. Phys. Lett. 95 053114
[31] Zhang J, Peng Z, Soni A, Zhao Y, Xiong Y, Peng B, Wang J, Dresselhaus M S and Xiong Q 2011 Nano Lett. 11 2407
[32] Yan Y, Zhou X, Jin H, Li C Z, Ke X, Van T G, Liu K, Yu D, Dressel M and Liao Z M 2015 Acs Nano 9 10244
[33] Li H, He H, Lu H Z, Zhang H, Liu H, Ma R, Fan Z, Shen S Q and Wang J 2016 Nat. Commun. 7 10301
[34] Gao M, Zhang M, Niu W, Chen Y, Gu M, Wang H, Song F, Wang P, Yan S, Wang F, Wang X R, Wang X F, Xu Y and Zhang R 2017 Appl. Phys. Lett. 111 031906
[35] Wang X, Pan X, Gao M, Yu J, Jiang J, Zhang J, Zuo H, Zhang M, Wei Z, Niu W, Xia Z Wan X, Chen Y, Song F, Xu Y, Wang B, Wang G and Zhang R 2016 Adv. Electron. Mater. 2 1600228
[36] Qu D X, Hor Y S, Xiong J, Cava R J and Ong N P 2010 Science 329 821
[37] Xiu F, He L, Wang Y, Cheng L, Chang L T, Lang M, Huang G, Kou X, Zhou Y, Jiang X, Chen Z, Zou J, Shailos A and Wang K 2011 Nat. Nanotech. 6 216
[1] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[2] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[3] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[4] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[5] Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony
Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源). Chin. Phys. B, 2019, 28(3): 037104.
[6] Atom-pair tunneling and quantum phase transition in asymmetry double-well trap in strong-interaction regime
Ji-Li Liu(刘吉利), Jiu-Qing Liang(梁九卿). Chin. Phys. B, 2019, 28(11): 110304.
[7] Heavy fermions in high magnetic fields
M Smidman, B Shen(沈斌), C Y Guo(郭春煜), L Jiao(焦琳), X Lu(路欣), H Q Yuan(袁辉球). Chin. Phys. B, 2019, 28(1): 017106.
[8] Electrical spin polarization through spin-momentum locking in topological-insulator nanostructures
Minhao Zhang(张敏昊), Xuefeng Wang(王学锋), Fengqi Song(宋凤麒), Rong Zhang(张荣). Chin. Phys. B, 2018, 27(9): 097307.
[9] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[10] Enhanced second harmonic generation in a two-dimensional optical micro-cavity
Jian-Jun Zhang(张建军), Hui-Fang Wang(王慧芳), Jun-Hua Hou(候俊华). Chin. Phys. B, 2018, 27(3): 034207.
[11] Phase diagram characterized by transmission in a triangular quantum dot
Jin Huang(黄金), Wei-Zhong Wang(王为忠). Chin. Phys. B, 2018, 27(11): 117303.
[12] Phase transition and charge transport through a triple dot device beyond the Kondo regime
Yong-Chen Xiong(熊永臣), Zhan-Wu Zhu(朱占武), Ze-Dong He(贺泽东). Chin. Phys. B, 2018, 27(10): 108503.
[13] Synthesis and magnetotransport properties of Bi2Se3 nanowires
Kang Zhang(张亢), Haiyang Pan(潘海洋), Zhongxia Wei(魏仲夏), Minhao Zhang(张敏昊), Fengqi Song(宋风麒), Xuefeng Wang(王学锋), Rong Zhang(张荣). Chin. Phys. B, 2017, 26(9): 096101.
[14] Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060501.
[15] Dynamical correlation functions of the quadratic coupling spin-Boson model
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060502.
No Suggested Reading articles found!