Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(11): 116501    DOI: 10.1088/1674-1056/26/11/116501
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles calculations of structural and thermodynamic properties of β-PbO

Vahedeh Razzazi, Sholeh Alaei
Department of Physics, Urmia Branch, Islamic Azad University, Urmia 969, Iran
Abstract  We employed ab-initio calculations to investigate the structural and thermodynamic properties of Massicot or orthorhombic phase of PbO named β-PbO using the projector augmented-wave (PAW) method within the generalized gradient approximation (GGA). The temperature and pressure dependence of bulk modulus, heat capacity at constant pressure and constant volume, entropy, thermal expansion coefficient and Grüneisen parameter were discussed. Accuracy of two different models, the Debye and Debye-Grüneisen which are based on the quasi-harmonic approximation (QHA) for producing thermodynamic properties of material were compared. According to calculation results, these two models can be used to designate thermodynamic properties for β-PbO with sensible accuracy over a wide range of temperatures and pressures, and our work on the properties of this structure will be useful for more deeply understanding various properties of this structure.
Keywords:  β-PbO      first-principles calculations      quasi-harmonic approximation      thermodynamic properties     
Received:  19 June 2017      Published:  05 November 2017
PACS:  65.40.-b (Thermal properties of crystalline solids)  
  63.20.dk (First-principles theory)  
  05.70.-a (Thermodynamics)  
  65.40.Ba (Heat capacity)  
Fund: Project supported by the Research Project of Islamic Azad University, Urmia Branch.
Corresponding Authors:  Vahedeh Razzazi     E-mail:  v.razzazi@iaurmia.ac.ir

Cite this article: 

Vahedeh Razzazi, Sholeh Alaei First-principles calculations of structural and thermodynamic properties of β-PbO 2017 Chin. Phys. B 26 116501

[1] Pan Z W, Dai Z R and Wang Z L 2002 Appl. Phys. Lett. 80 309
[2] Sun P, Matsuura N and Ruda H F 2004 J. Appl. Phys. 96 3417
[3] White W B, Dachille F and Roy R 1961 J. Am. Ceram. Soc. 44 170
[4] Leciejewicz J 1961 Acta Crystallogr. 14 1304
[5] Hehner N E and Ritchie E J 1974 Lead Oxides:Chemistry, Technology, Battery Manufacturing Uses, History(Largo, Fla.:Independent Batttery Manufacturers Association)
[6] Shi S, Gao J, Liu Y, Zhao Y, Wu Q, Ju W, Ouyang C and Xiao R 2016 Chin. Phys. B 25 018212
[7] Kwestroo W, de Jonge J and Vromans P H G M 1967 J. Inorganic Nuclear Chem. 29 39
[8] Wriedt H A 1988 J. Phase Equilibria 9 106
[9] Shi S, Zhang H, Ke X, Ouyang C, Lei M and Chen L 2009 Phys. Lett. A 373 4096
[10] Shi S, Ke X, Ouyang C, Zhanga H, Dinga H, Tanga Y, Zhoua W, Li P, Lei M and Tanga W 2009 J. Power Sources 194 830
[11] Cang Y P, Lian S B, Yang H M and Chen D 2016 Chin. Phys. Lett. 33 066301
[12] Ren Y M and Li X 2016 Acta Phys. Sin. 65 156301 (in Chinese)
[13] Liu X K and Tang B 2013 Chin. Phys. Lett. 30 066201
[14] Wang X F, Ma J J, Jiao Z Y and Zhang X Z 2016 Acta Phys. Sin. 65 206201 (in Chinese)
[15] Boher P, Garnier P, Gavarri J R and Hewat A W 1985 J. Sol. State Chem. 57 343
[16] Adams D M, Christy A G, Haines J and Clark S M 1992 Phys. Rev. B 46 11358
[17] Mizoguchi H, Kawazoe H and Hosono H 1996 Chem. Mater. 8 2769
[18] White W B and Roy R 1964 J. Amer. Ceram. Soc. 47 242
[19] Canepa P, Ugliengo P and Alfredsson M 2012 arXiv:1204.2842v3[cond-mat.mtrl-sci]
[20] Moruzzi V L, Janak J F and Schwarz K 1988 Phys. Rev. B 37 790
[21] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, Fabris S, Fratesi G, de Gironcoli S, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P and Wentzcovitch R M 2009 J. Phys.:Condens. Matter 21 395502
[22] Vanderbilt D 1990 Phys. Rev. B 41 7892
[23] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[24] Monkhorst J and Pack J D 1976 Phys. Rev. B 13 5188
[25] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[26] Birch F 1947 Phys. Rev. 71 809
[27] Birch F 1978 J. Geophys. Res. 83 1257
[28] Anderson O L 1963 J. Phys. Chem. Solids 24 909
[29] Blanco M A, Francisco E and Luaña V 2004 Comput. Phys. Commun. 158 57
[30] Rooymans C J M 1968 Structural Investigations on Some Oxides and Other Chalcogenides at Normal and Very High Pressures (Netherlands:Philips Res. Repts Suppl.)
[31] Francisco E, Recio J M, Blanco M A and Martín P A 1998 J. Phys. Chem. 102 1595
[32] Francisco E, Sanjurjo G and Blanco M A 2001 Phys. Rev. B 63 094107
[33] Flórez M, Recio J M, Francisco E, Blanco M A and Martín P A 2002 Phys. Rev. B 66 144112
[34] Otero-de-la-Roza A, Abbasi-Pérez D and Luaña V 2011 Comput. Phys. Commun. 182 2232
[35] Takayanagi S, Araki S, Setta R, Onuki Y and Mori N 2001 J. Phys. Soc. Jpn. 70 753
[36] Spencer H M and SpicerW M 1942 J. Am. Chem. Soc. 64 617
[37] Risold D, Nagata J I and Suzuki R O 1998 J. Phase Equilibria 19 213
[38] Chase M W, Davies C A, Downey J R, Frurip D J, Mcdonald R A and Syverud A N 1985 JANAF Thermochemical Tables(3rd edn.) J. Phys. Chem, Ref. Data 14 Suppl. 1
[39] Kostryukov V N and Morozova G K 1960 Russ. J. Phys. Chem. 384 873
[40] Sorrell C A 1970 J. Amer. Ceramic Soc.-Sorrel 53 10
[41] White W B, Dachille F and Roy R 1961 J. Am. Ceram. Soc. 44 170
[42] Ruer R 1906 Z. Anorg. Allg. Chem. 50 265
[43] Jaeger F M and Germs H C 1921 Z. Anorg. Allg. Chem. 119 145
[44] Pedley J B, Naylor R D and Kirby S P 1986 Thermochemical Data of Organic Compounds (2nd edn.)(London:Chapman& Hall)
[45] Dzhafarov T D, Altunbas M and Gorur O 1996 J. Mater. Sci. 31 2207
[46] Kirchner H P 1964 Solid State Chem. 1 1
[47] Giefersa H and Porschb F 2007 Physica B 400 53
[1] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[2] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[3] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[4] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[5] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[6] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[7] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[8] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[9] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[10] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[11] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[12] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
[13] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
[14] Exploration of the structural and optical properties of a red-emitting phosphor K2TiF6:Mn4+
Xi-Long Dou(豆喜龙), Xiao-Yu Kuang(邝小渝), Xin-Xin Xia(夏欣欣), Meng Ju(巨濛). Chin. Phys. B, 2019, 28(1): 017107.
[15] Site preferences of alloying transition metal elements in Ni-based superalloy: A first-principles study
Baokun Lu(路宝坤), Chong-Yu Wang(王崇愚), Zhihui Du(都志辉). Chin. Phys. B, 2018, 27(9): 097102.
No Suggested Reading articles found!